- 필수 기능
- 시작하기
- Glossary
- 표준 속성
- Guides
- Agent
- 통합
- 개방형텔레메트리
- 개발자
- Administrator's Guide
- API
- Datadog Mobile App
- CoScreen
- Cloudcraft
- 앱 내
- 서비스 관리
- 인프라스트럭처
- 애플리케이션 성능
- APM
- Continuous Profiler
- 스팬 시각화
- 데이터 스트림 모니터링
- 데이터 작업 모니터링
- 디지털 경험
- 소프트웨어 제공
- 보안
- AI Observability
- 로그 관리
- 관리
",t};e.buildCustomizationMenuUi=t;function n(e){let t='
",t}function s(e){let n=e.filter.currentValue||e.filter.defaultValue,t='${e.filter.label}
`,e.filter.options.forEach(s=>{let o=s.id===n;t+=``}),t+="${e.filter.label}
`,t+=`Starting in Agent v7.60+, Datadog uses dynamic resource calculation for init containers that inject tracing libraries. Instead of using fixed values, the init containers temporarily request all available CPU and memory for the pod, without affecting how the pod is scheduled. (Prior to v7.60, init containers used conservative defaults: 50m
for CPU and 20Mi
for memory.)
This behavior improves tracer startup reliability while respecting Kubernetes scheduling rules. Since init containers run sequentially and exit before application containers start, they don’t compete for runtime resources.
Kubernetes schedules pods using a formula that accounts for init containers:
Effective CPU/Memory request =
max(sum of requests from all regular containers,
max request of any single init container)
Since init containers run before application containers (and don’t overlap with them), they can temporarily use more resources without increasing the pod’s effective request. This works as long as no single init container requests more resources than the pod can tolerate.
If needed, you can override the default init container resource usage by setting the following environment variables in the Cluster Agent configuration:
DD_ADMISSION_CONTROLLER_AUTO_INSTRUMENTATION_INIT_RESOURCES_CPU
DD_ADMISSION_CONTROLLER_AUTO_INSTRUMENTATION_INIT_RESOURCES_MEMORY