- 필수 기능
- 시작하기
- Glossary
- 표준 속성
- Guides
- Agent
- 통합
- 개방형텔레메트리
- 개발자
- Administrator's Guide
- API
- Datadog Mobile App
- CoScreen
- Cloudcraft
- 앱 내
- 서비스 관리
- 인프라스트럭처
- 애플리케이션 성능
- APM
- Continuous Profiler
- 스팬 시각화
- 데이터 스트림 모니터링
- 데이터 작업 모니터링
- 디지털 경험
- 소프트웨어 제공
- 보안
- AI Observability
- 로그 관리
- 관리
Supported OS
Monitor, troubleshoot, and evaluate your LLM-powered applications, such as chatbots or data extraction tools, using OpenAI. With LLM Observability, you can investigate the root cause of issues, monitor operational performance, and evaluate the quality, privacy, and safety of your LLM applications.
Get cost estimation, prompt and completion sampling, error tracking, performance metrics, and more out of OpenAI account-level, Python, Node.js, and PHP library requests using Datadog metrics, APM, and logs.
Note: This setup method only collects openai.api.usage.*
metrics. To collect all metrics provided by this integration, also follow the APM setup instructions.
Note: This setup method only collects openai.api.usage*
metrics, and if you enable OpenAI in Cloud Cost Management, you will also get cost metrics, no additional permissions or setup required. Use the agent setup below for additional metrics.
Note: This setup method does not collect openai.api.usage.*
metrics. To collect these metrics, also follow the API key setup instructions.
You can enable LLM Observability in different environments. Follow the appropriate setup based on your scenario:
Install the ddtrace
package:
pip install ddtrace
Start your application with the following command, enabling agentless mode:
DD_SITE=<YOUR_DATADOG_SITE> DD_API_KEY=<YOUR_API_KEY> DD_LLMOBS_ENABLED=1 DD_LLMOBS_AGENTLESS_ENABLED=1 DD_LLMOBS_ML_APP=<YOUR_ML_APP_NAME> ddtrace-run python <YOUR_APP>.py
Make sure the Agent is running and that APM and StatsD are enabled. For example, use the following command with Docker:
docker run -d \
--cgroupns host \
--pid host \
-v /var/run/docker.sock:/var/run/docker.sock:ro \
-v /proc/:/host/proc/:ro \
-v /sys/fs/cgroup/:/host/sys/fs/cgroup:ro \
-e DD_API_KEY=<DATADOG_API_KEY> \
-p 127.0.0.1:8126:8126/tcp \
-p 127.0.0.1:8125:8125/udp \
-e DD_DOGSTATSD_NON_LOCAL_TRAFFIC=true \
-e DD_APM_ENABLED=true \
gcr.io/datadoghq/agent:latest
Install the ddtrace
package if it isn’t installed yet:
pip install ddtrace
Start your application using the ddtrace-run
command to automatically enable tracing:
DD_SITE=<YOUR_DATADOG_SITE> DD_API_KEY=<YOUR_API_KEY> DD_LLMOBS_ENABLED=1 DD_LLMOBS_ML_APP=<YOUR_ML_APP_NAME> ddtrace-run python <YOUR_APP>.py
Note: If the Agent is running on a custom host or port, set DD_AGENT_HOST
and DD_TRACE_AGENT_PORT
accordingly.
Install the Datadog-Python and Datadog-Extension Lambda layers as part of your AWS Lambda setup.
Enable LLM Observability by setting the following environment variables:
DD_SITE=<YOUR_DATADOG_SITE> DD_API_KEY=<YOUR_API_KEY> DD_LLMOBS_ENABLED=1 DD_LLMOBS_ML_APP=<YOUR_ML_APP_NAME>
Note: In serverless environments, Datadog automatically flushes spans when the Lambda function finishes running.
LLM Observability provides automatic tracing for OpenAI’s completion and chat completion methods without requiring manual instrumentation.
The SDK will automatically trace the following OpenAI methods:
OpenAI().completions.create()
, OpenAI().chat.completions.create()
AsyncOpenAI().completions.create()
, AsyncOpenAI().chat.completions.create()
No additional setup is required to capture latency, input/output messages, and token usage for these traced calls.
Validate that LLM Observability is properly capturing spans by checking your application logs for successful span creation. You can also run the following command to check the status of the ddtrace
integration:
ddtrace-run --info
Look for the following message to confirm the setup:
Agent error: None
If you encounter issues during setup, enable debug logging by passing the --debug
flag:
ddtrace-run --debug
This will display detailed information about any errors or issues with tracing.
Enable APM and StatsD in your Datadog Agent. For example, in Docker:
docker run -d
--cgroupns host \
--pid host \
-v /var/run/docker.sock:/var/run/docker.sock:ro \
-v /proc/:/host/proc/:ro \
-v /sys/fs/cgroup/:/host/sys/fs/cgroup:ro \
-e DD_API_KEY=<DATADOG_API_KEY> \
-p 127.0.0.1:8126:8126/tcp \
-p 127.0.0.1:8125:8125/udp \
-e DD_DOGSTATSD_NON_LOCAL_TRAFFIC=true \
-e DD_APM_ENABLED=true \
gcr.io/datadoghq/agent:latest
Install the Datadog APM Python library.
pip install ddtrace
Prefix your OpenAI Python application command with ddtrace-run
and the following environment variables as shown below:
DD_SERVICE="my-service" DD_ENV="staging" ddtrace-run python <your-app>.py
Notes:
DD_SITE
on the application command to the correct Datadog site parameter as specified in the table in the Datadog Site page (for example, datadoghq.eu
for EU1 customers).DD_AGENT_HOST
, DD_TRACE_AGENT_PORT
, or DD_DOGSTATSD_PORT
.See the APM Python library documentation for more advanced usage.
See the APM Python library documentation for all the available configuration options.
To enable log prompt and completion sampling, set the DD_OPENAI_LOGS_ENABLED="true"
environment variable. By default, 10% of traced requests will emit logs containing the prompts and completions.
To adjust the log sample rate, see the APM library documentation.
Note: Logs submission requires DD_API_KEY
to be specified when running ddtrace-run
.
Validate that the APM Python library can communicate with your Agent using:
ddtrace-run --info
You should see the following output:
Agent error: None
Pass the --debug
flag to ddtrace-run
to enable debug logging.
ddtrace-run --debug
This displays any errors sending data:
ERROR:ddtrace.internal.writer.writer:failed to send, dropping 1 traces to intake at http://localhost:8126/v0.5/traces after 3 retries ([Errno 61] Connection refused)
WARNING:ddtrace.vendor.dogstatsd:Error submitting packet: [Errno 61] Connection refused, dropping the packet and closing the socket
DEBUG:ddtrace.contrib.openai._logging.py:sent 2 logs to 'http-intake.logs.datadoghq.com'
Note: This setup method does not collect openai.api.usage.*
metrics. To collect these metrics, also follow the API key setup instructions.
You can enable LLM Observability in different environments. Follow the appropriate setup based on your scenario:
Install the dd-trace
package:
npm install dd-trace
Start your application with the following command, enabling agentless mode:
DD_SITE=<YOUR_DATADOG_SITE> DD_API_KEY=<YOUR_API_KEY> DD_LLMOBS_ENABLED=1 DD_LLMOBS_AGENTLESS_ENABLED=1 DD_LLMOBS_ML_APP=<YOUR_ML_APP_NAME> node -r 'dd-trace/init' <your_app>.js
Make sure the Agent is running and that APM and StatsD are enabled. For example, use the following command with Docker:
docker run -d \
--cgroupns host \
--pid host \
-v /var/run/docker.sock:/var/run/docker.sock:ro \
-v /proc/:/host/proc/:ro \
-v /sys/fs/cgroup/:/host/sys/fs/cgroup:ro \
-e DD_API_KEY=<DATADOG_API_KEY> \
-p 127.0.0.1:8126:8126/tcp \
-p 127.0.0.1:8125:8125/udp \
-e DD_DOGSTATSD_NON_LOCAL_TRAFFIC=true \
-e DD_APM_ENABLED=true \
gcr.io/datadoghq/agent:latest
Install the Datadog APM Python library.
npm install dd-trace
Start your application using the -r dd-trace/init
or NODE_OPTIONS='--require dd-trace/init'
command to automatically enable tracing:
DD_SITE=<YOUR_DATADOG_SITE> DD_API_KEY=<YOUR_API_KEY> DD_LLMOBS_ENABLED=1 DD_LLMOBS_ML_APP=<YOUR_ML_APP_NAME> node -r 'dd-trace/init' <your_app>.js
Note: If the Agent is running on a custom host or port, set DD_AGENT_HOST
and DD_TRACE_AGENT_PORT
accordingly.
Enable LLM Observability by setting the following environment variables:
DD_SITE=<YOUR_DATADOG_SITE> DD_API_KEY=<YOUR_API_KEY> DD_LLMOBS_ENABLED=1 DD_LLMOBS_ML_APP=<YOUR_ML_APP_NAME>
Before the lambda finishes, call llmobs.flush()
:
const llmobs = require('dd-trace').llmobs;
// or, if dd-trace was not initialized via NODE_OPTIONS
const llmobs = require('dd-trace').init({
llmobs: {
mlApp: <YOUR_ML_APP>,
}
}).llmobs; // with DD_API_KEY and DD_SITE being set at the environment level
async function handler (event, context) {
...
llmobs.flush()
return ...
}
LLM Observability provides automatic tracing for OpenAI’s completion, chat completion, and embedding methods without requiring manual instrumentation.
The SDK will automatically trace the following OpenAI methods:
client.completions.create()
, client.chat.completions.create()
, client.embeddings.create()
(where client is an instance of OpenAI
)No additional setup is required to capture latency, input/output messages, and token usage for these traced calls.
If you encounter issues during setup, enable debug logging by setting DD_TRACE_DEBUG=1
This will display detailed information about any errors or issues with tracing.
Enable APM and StatsD in your Datadog Agent. For example, in Docker:
docker run -d
--cgroupns host \
--pid host \
-v /var/run/docker.sock:/var/run/docker.sock:ro \
-v /proc/:/host/proc/:ro \
-v /sys/fs/cgroup/:/host/sys/fs/cgroup:ro \
-e DD_API_KEY=<DATADOG_API_KEY> \
-p 127.0.0.1:8126:8126/tcp \
-p 127.0.0.1:8125:8125/udp \
-e DD_DOGSTATSD_NON_LOCAL_TRAFFIC=true \
-e DD_APM_ENABLED=true \
gcr.io/datadoghq/agent:latest
Install the Datadog APM Node.js library.
npm install dd-trace
Inject the library into your OpenAI Node.js application.
DD_TRACE_DEBUG=1 DD_TRACE_BEAUTIFUL_LOGS=1 DD_SERVICE="my-service" \
DD_ENV="staging" DD_API_KEY=<DATADOG_API_KEY> \
NODE_OPTIONS='-r dd-trace/init' node app.js
Note: If the Agent is using a non-default hostname or port, you must also set DD_AGENT_HOST
, DD_TRACE_AGENT_PORT
, or DD_DOGSTATSD_PORT
.
See the APM Node.js OpenAI documentation for more advanced usage.
See the APM Node.js library documentation for all the available configuration options.
To enable log prompt and completion sampling, set the DD_OPENAI_LOGS_ENABLED=1
environment variable. By default, 10% of traced requests emit logs containing the prompts and completions.
To adjust the log sample rate, see the APM library documentation.
Note: Logs submission requires DD_API_KEY
to be specified.
Validate that the APM Node.js library can communicate with your Agent by examining the debugging output from the application process. Within the section titled “Encoding payload,” you should see an entry with a name
field and a correlating value of openai.request
. See below for a truncated example of this output:
{
"name": "openai.request",
"resource": "listModels",
"meta": {
"component": "openai",
"span.kind": "client",
"openai.api_base": "https://api.openai.com/v1",
"openai.request.endpoint": "/v1/models",
"openai.request.method": "GET",
"language": "javascript"
},
"metrics": {
"openai.response.count": 106
},
"service": "my-service",
"type": "openai"
}
Note: To collect openai.api.usage.*
metrics, follow the API key setup instructions.
Enable APM and StatsD in your Datadog Agent. For example, in Docker:
docker run -d
--cgroupns host \
--pid host \
-v /var/run/docker.sock:/var/run/docker.sock:ro \
-v /proc/:/host/proc/:ro \
-v /sys/fs/cgroup/:/host/sys/fs/cgroup:ro \
-e DD_API_KEY=<DATADOG_API_KEY> \
-p 127.0.0.1:8126:8126/tcp \
-p 127.0.0.1:8125:8125/udp \
-e DD_DOGSTATSD_NON_LOCAL_TRAFFIC=true \
-e DD_APM_ENABLED=true \
gcr.io/datadoghq/agent:latest
The library is automatically injected into your OpenAI PHP application.
Notes:
DD_SITE
on the application command to the correct Datadog site parameter as specified in the table in the Datadog Site page (for example, datadoghq.eu
for EU1 customers).DD_AGENT_HOST
, DD_TRACE_AGENT_PORT
, or DD_DOGSTATSD_PORT
.See the APM PHP library documentation for more advanced usage.
See the APM PHP library documentation for all the available configuration options.
To enable log prompt and completion sampling, set the DD_OPENAI_LOGS_ENABLED="true"
environment variable. By default, 10% of traced requests will emit logs containing the prompts and completions.
To adjust the log sample rate, see the APM library documentation.
Note: To ensure logs are correlated with traces, Datadog recommends you enable DD_LOGS_INJECTION
.
To validate that the APM PHP library can communicate with your Agent, examine the phpinfo output of your service. Under the ddtrace
section, Diagnostic checks
should be passed
.
openai.api.usage.n_context_tokens_total (gauge) | Total number of context tokens used (all-time) Shown as token |
openai.api.usage.n_generated_tokens_total (gauge) | Total number of generated response tokens (all-time) Shown as token |
openai.api.usage.n_requests (count) | Total number of requests Shown as request |
openai.organization.ratelimit.requests.remaining (gauge) | Number of requests remaining in the rate limit. Shown as request |
openai.organization.ratelimit.tokens.remaining (gauge) | Number of tokens remaining in the rate limit. Shown as token |
openai.ratelimit.requests (gauge) | Number of requests in the rate limit. Shown as request |
openai.ratelimit.tokens (gauge) | Number of tokens in the rate limit. Shown as token |
openai.request.duration (gauge) | Request duration distribution. Shown as nanosecond |
openai.request.error (count) | Number of errors. Shown as error |
openai.tokens.completion (gauge) | Number of tokens used in the completion of a response from OpenAI. Shown as token |
openai.tokens.prompt (gauge) | Number of tokens used in the prompt of a request to OpenAI. Shown as token |
openai.tokens.total (gauge) | Total number of tokens used in a request to OpenAI. Shown as token |
The OpenAI integration does not include any events.
The OpenAI integration does not include any service checks.
Need help? Contact Datadog support.
Additional helpful documentation, links, and articles: