- 필수 기능
- 시작하기
- Glossary
- 표준 속성
- Guides
- Agent
- 통합
- 개방형텔레메트리
- 개발자
- Administrator's Guide
- API
- Datadog Mobile App
- CoScreen
- Cloudcraft
- 앱 내
- 서비스 관리
- 인프라스트럭처
- 애플리케이션 성능
- APM
- Continuous Profiler
- 스팬 시각화
- 데이터 스트림 모니터링
- 데이터 작업 모니터링
- 디지털 경험
- 소프트웨어 제공
- 보안
- AI Observability
- 로그 관리
- 관리
Google Cloud 기계 학습은 모든 유형의 데이터에서 규모와 상관없이 동작하는 기계 학습 모델을 쉽게 구축할 수 있도록 도와드리는 관리형 서비스입니다.
Google 기계 학습 메트릭을 수집하면 다음을 할 수 있습니다.
아직 설정하지 않았다면, 먼저 Google Cloud Platform 통합을 설정하세요. 그 외 다른 설치 단계는 없습니다.
Google Cloud 기계 학습 로그는 Google Cloud Logging으로 수집하여 클라우드 Pub/Sub 토픽을 통해 데이터 플로우 작업으로 전송됩니다. 아직 설정하지 않았다면 Datadog 데이터 플로우 템플릿으로 로깅을 설정하세요.
해당 작업이 완료되면 Google Cloud Logging에서 Google Cloud 기계 학습 로그를 다음 Pub/Sub 주제로 내보냅니다.
gcp.ml.prediction.error_count (count) | Cumulative count of prediction errors. |
gcp.ml.prediction.latencies.avg (count) | The average latency of a certain type. Shown as microsecond |
gcp.ml.prediction.latencies.samplecount (count) | The sample count for latency of a certain type. Shown as microsecond |
gcp.ml.prediction.latencies.sumsqdev (count) | The sum of squared deviation for latency of a certain type. Shown as microsecond |
gcp.ml.prediction.online.accelerator.duty_cycle (gauge) | Average fraction of time over the past sample period during which the accelerator(s) were actively processing. |
gcp.ml.prediction.online.accelerator.memory.bytes_used (gauge) | Amount of accelerator memory allocated by the model replica. Shown as byte |
gcp.ml.prediction.online.cpu.utilization (gauge) | Fraction of CPU allocated by the model replica and currently in use. May exceed 100% if the machine type has multiple CPUs. |
gcp.ml.prediction.online.memory.bytes_used (gauge) | Amount of memory allocated by the model replica and currently in use. Shown as byte |
gcp.ml.prediction.online.network.bytes_received (count) | Number of bytes received over the network by the model replica. Shown as byte |
gcp.ml.prediction.online.network.bytes_sent (count) | Number of bytes sent over the network by the model replica. Shown as byte |
gcp.ml.prediction.online.replicas (gauge) | Number of active model replicas. |
gcp.ml.prediction.online.target_replicas (gauge) | Aspired number of active model replicas. |
gcp.ml.prediction.prediction_count (count) | Cumulative count of predictions. |
gcp.ml.prediction.response_count (count) | Cumulative count of different response codes. |
gcp.ml.training.accelerator.memory.utilization (gauge) | Fraction of allocated accelerator memory that is currently in use. Values are numbers between 0.0 and 1.0, charts display the values as a percentage between 0% and 100%. |
gcp.ml.training.accelerator.utilization (gauge) | Fraction of allocated accelerator that is currently in use. Values are numbers between 0.0 and 1.0, charts display the values as a percentage between 0% and 100%. |
gcp.ml.training.cpu.utilization (gauge) | Fraction of allocated CPU that is currently in use. Values are numbers between 0.0 and 1.0, charts display the values as a percentage between 0% and 100%. |
gcp.ml.training.memory.utilization (gauge) | Fraction of allocated memory that is currently in use. Values are numbers between 0.0 and 1.0, charts display the values as a percentage between 0% and 100%. |
gcp.ml.training.network.received_bytes_count (count) | Number of bytes received by the training job over the network. Shown as byte |
gcp.ml.training.network.sent_bytes_count (count) | Number of bytes sent by the training job over the network. Shown as byte |
Google Cloud 기계 학습 통합에는 이벤트가 포함되어 있지 않습니다.
Google Cloud 기계 학습 통합은 서비스 점검을 포함하지 않습니다.
도움이 필요하신가요? Datadog 지원팀에 문의하세요.
추가 유용한 문서, 링크 및 기사: