- 필수 기능
- 시작하기
- Glossary
- 표준 속성
- Guides
- Agent
- 통합
- 개방형텔레메트리
- 개발자
- Administrator's Guide
- API
- Datadog Mobile App
- CoScreen
- Cloudcraft
- 앱 내
- 서비스 관리
- 인프라스트럭처
- 애플리케이션 성능
- APM
- Continuous Profiler
- 스팬 시각화
- 데이터 스트림 모니터링
- 데이터 작업 모니터링
- 디지털 경험
- 소프트웨어 제공
- 보안
- AI Observability
- 로그 관리
- 관리
",t};e.buildCustomizationMenuUi=t;function n(e){let t='
",t}function s(e){let n=e.filter.currentValue||e.filter.defaultValue,t='${e.filter.label}
`,e.filter.options.forEach(s=>{let o=s.id===n;t+=``}),t+="${e.filter.label}
`,t+=`ancestors
Type: UNORDERED_LIST_STRING
big_query
Type: STRUCT
Provider name: bigQuery
Description: Indicates that features for this group come from BigQuery Table/View. By default treats the source as a sparse time series source. The BigQuery source table or view must have at least one entity ID column and a column named feature_timestamp
.
big_query_source
STRUCT
bigQuerySource
input_uri
STRING
inputUri
bq://projectId.bqDatasetId.bqTableId
.dense
BOOLEAN
dense
(entity_id, feature_timestamp, f0, f1)
and the following rows: (e1, 2020-01-01T10:00:00.123Z, 10, 15)
(e1, 2020-02-01T10:00:00.123Z, 20, null)
If dense is set, (e1, 20, null)
is synced to online stores. If dense is not set, (e1, 20, 15)
is synced to online stores.entity_id_columns
UNORDERED_LIST_STRING
entityIdColumns
entity_id
.static_data_source
BOOLEAN
staticDataSource
time_series
STRUCT
timeSeries
feature_timestamp
as timestamp column and no scan boundary.timestamp_column
STRING
timestampColumn
feature_values
for each entity. Optional. If not provided, column named feature_timestamp
of type TIMESTAMP
will be used.create_time
Type: TIMESTAMP
Provider name: createTime
Description: Output only. Timestamp when this FeatureGroup was created.
description
Type: STRING
Provider name: description
Description: Optional. Description of the FeatureGroup.
etag
Type: STRING
Provider name: etag
Description: Optional. Used to perform consistent read-modify-write updates. If not set, a blind “overwrite” update happens.
labels
Type: UNORDERED_LIST_STRING
name
Type: STRING
Provider name: name
Description: Identifier. Name of the FeatureGroup. Format: projects/{project}/locations/{location}/featureGroups/{featureGroup}
organization_id
Type: STRING
parent
Type: STRING
project_id
Type: STRING
project_number
Type: STRING
resource_name
Type: STRING
service_account_email
Type: STRING
Provider name: serviceAccountEmail
Description: Output only. A Service Account unique to this FeatureGroup. The role bigquery.dataViewer should be granted to this service account to allow Vertex AI Feature Store to access source data while running jobs under this FeatureGroup.
service_agent_type
Type: STRING
Provider name: serviceAgentType
Description: Optional. Service agent type used during jobs under a FeatureGroup. By default, the Vertex AI Service Agent is used. When using an IAM Policy to isolate this FeatureGroup within a project, a separate service account should be provisioned by setting this field to SERVICE_AGENT_TYPE_FEATURE_GROUP
. This will generate a separate service account to access the BigQuery source table.
Possible values:
SERVICE_AGENT_TYPE_UNSPECIFIED
- By default, the project-level Vertex AI Service Agent is enabled.SERVICE_AGENT_TYPE_PROJECT
- Specifies the project-level Vertex AI Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents).SERVICE_AGENT_TYPE_FEATURE_GROUP
- Enable a FeatureGroup service account to be created by Vertex AI and output in the field service_account_email
. This service account will be used to read from the source BigQuery table during jobs under a FeatureGroup.tags
Type: UNORDERED_LIST_STRING
update_time
Type: TIMESTAMP
Provider name: updateTime
Description: Output only. Timestamp when this FeatureGroup was last updated.