- 필수 기능
- 시작하기
- Glossary
- 표준 속성
- Guides
- Agent
- 통합
- 개방형텔레메트리
- 개발자
- Administrator's Guide
- API
- Datadog Mobile App
- CoScreen
- Cloudcraft
- 앱 내
- 서비스 관리
- 인프라스트럭처
- 애플리케이션 성능
- APM
- Continuous Profiler
- 스팬 시각화
- 데이터 스트림 모니터링
- 데이터 작업 모니터링
- 디지털 경험
- 소프트웨어 제공
- 보안
- AI Observability
- 로그 관리
- 관리
",t};e.buildCustomizationMenuUi=t;function n(e){let t='
",t}function s(e){let n=e.filter.currentValue||e.filter.defaultValue,t='${e.filter.label}
`,e.filter.options.forEach(s=>{let o=s.id===n;t+=``}),t+="${e.filter.label}
`,t+=`account_id
Type: STRING
compilation_end_time
Type: TIMESTAMP
Provider name: CompilationEndTime
Description: The time when the model compilation job on a compilation job instance ended. For a successful or stopped job, this is when the job’s model artifacts have finished uploading. For a failed job, this is when Amazon SageMaker AI detected that the job failed.
compilation_job_arn
Type: STRING
Provider name: CompilationJobArn
Description: The Amazon Resource Name (ARN) of the model compilation job.
compilation_job_name
Type: STRING
Provider name: CompilationJobName
Description: The name of the model compilation job.
compilation_job_status
Type: STRING
Provider name: CompilationJobStatus
Description: The status of the model compilation job.
compilation_start_time
Type: TIMESTAMP
Provider name: CompilationStartTime
Description: The time when the model compilation job started the CompilationJob
instances. You are billed for the time between this timestamp and the timestamp in the CompilationEndTime
field. In Amazon CloudWatch Logs, the start time might be later than this time. That’s because it takes time to download the compilation job, which depends on the size of the compilation job container.
creation_time
Type: TIMESTAMP
Provider name: CreationTime
Description: The time that the model compilation job was created.
derived_information
Type: STRUCT
Provider name: DerivedInformation
Description: Information that SageMaker Neo automatically derived about the model.
derived_data_input_config
STRING
DerivedDataInputConfig
failure_reason
Type: STRING
Provider name: FailureReason
Description: If a model compilation job failed, the reason it failed.
inference_image
Type: STRING
Provider name: InferenceImage
Description: The inference image to use when compiling a model. Specify an image only if the target device is a cloud instance.
input_config
Type: STRUCT
Provider name: InputConfig
Description: Information about the location in Amazon S3 of the input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.
data_input_config
STRING
DataInputConfig
Framework
specific.TensorFlow
: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.{“input”:[1,1024,1024,3]}
{"input":[1,1024,1024,3]}
{“data1”: [1,28,28,1], “data2”:[1,28,28,1]}
{"data1": [1,28,28,1], "data2":[1,28,28,1]}
KERAS
: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format, DataInputConfig
should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different.{“input_1”:[1,3,224,224]}
{"input_1":[1,3,224,224]}
{“input_1”: [1,3,224,224], “input_2”:[1,3,224,224]}
{"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
MXNET/ONNX/DARKNET
: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.{“data”:[1,3,1024,1024]}
{"data":[1,3,1024,1024]}
{“var1”: [1,1,28,28], “var2”:[1,1,28,28]}
{"var1": [1,1,28,28], "var2":[1,1,28,28]}
PyTorch
: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.{“input0”:[1,3,224,224]}
{"input0":[1,3,224,224]}
[[1,3,224,224]]
{“input0”:[1,3,224,224], “input1”:[1,3,224,224]}
{"input0":[1,3,224,224], "input1":[1,3,224,224]}
[[1,3,224,224], [1,3,224,224]]
XGBOOST
: input data name and shape are not needed.DataInputConfig
supports the following parameters for CoreML
TargetDevice
(ML Model format):shape
: Input shape, for example {“input_1”: {“shape”: [1,224,224,3]}}
. In addition to static input shapes, CoreML converter supports Flexible input shapes:{“input_1”: {“shape”: [“1..10”, 224, 224, 3]}}
{“input_1”: {“shape”: [[1, 224, 224, 3], [1, 160, 160, 3]]}}
default_shape
: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example {“input_1”: {“shape”: [“1..10”, 224, 224, 3], “default_shape”: [1, 224, 224, 3]}}
type
: Input type. Allowed values: Image
and Tensor
. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such as bias
and scale
.bias
: If the input type is an Image, you need to provide the bias vector.scale
: If the input type is an Image, you need to provide a scale factor.ClassifierConfig
parameters can be specified using OutputConfig CompilerOptions
. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples:“DataInputConfig”: {“input_1”: {“shape”: [[1,224,224,3], [1,160,160,3]], “default_shape”: [1,224,224,3]}}
“DataInputConfig”: [{“shape”: [[1,3,224,224], [1,3,160,160]], “default_shape”: [1,3,224,224]}]
“DataInputConfig”: {“input_1”: {“shape”: [[1,224,224,3], [1,160,160,3]], “default_shape”: [1,224,224,3], “type”: “Image”, “bias”: [-1,-1,-1], “scale”: 0.007843137255}}
“CompilerOptions”: {“class_labels”: “imagenet_labels_1000.txt”}
“DataInputConfig”: [{“shape”: [[1,3,224,224], [1,3,160,160]], “default_shape”: [1,3,224,224], “type”: “Image”, “bias”: [-1,-1,-1], “scale”: 0.007843137255}]
“CompilerOptions”: {“class_labels”: “imagenet_labels_1000.txt”}
DataInputConfig
requires the following parameters for ml_eia2
OutputConfig:TargetDevice.signature_def_key
and the input model shapes for DataInputConfig
. Specify the signature_def_key
in OutputConfig:CompilerOptions
if the model does not use TensorFlow’s default signature def key. For example:“DataInputConfig”: {“inputs”: [1, 224, 224, 3]}
“CompilerOptions”: {“signature_def_key”: “serving_custom”}
DataInputConfig
and the output tensor names for output_names
in OutputConfig:CompilerOptions
. For example:“DataInputConfig”: {“input_tensor:0”: [1, 224, 224, 3]}
“CompilerOptions”: {“output_names”: [“output_tensor:0”]}
framework
STRING
Framework
framework_version
STRING
FrameworkVersion
s3_uri
STRING
S3Uri
last_modified_time
Type: TIMESTAMP
Provider name: LastModifiedTime
Description: The time that the status of the model compilation job was last modified.
model_artifacts
Type: STRUCT
Provider name: ModelArtifacts
Description: Information about the location in Amazon S3 that has been configured for storing the model artifacts used in the compilation job.
s3_model_artifacts
STRING
S3ModelArtifacts
s3://bucket-name/keynameprefix/model.tar.gz
.model_digests
Type: STRUCT
Provider name: ModelDigests
Description: Provides a BLAKE2 hash value that identifies the compiled model artifacts in Amazon S3.
artifact_digest
STRING
ArtifactDigest
model_package_version_arn
Type: STRING
Provider name: ModelPackageVersionArn
Description: The Amazon Resource Name (ARN) of the versioned model package that was provided to SageMaker Neo when you initiated a compilation job.
output_config
Type: STRUCT
Provider name: OutputConfig
Description: Information about the output location for the compiled model and the target device that the model runs on.
compiler_options
STRING
CompilerOptions
TargetPlatform
specific. It is required for NVIDIA accelerators and highly recommended for CPU compilations. For any other cases, it is optional to specify CompilerOptions.
DTYPE
: Specifies the data type for the input. When compiling for ml_*
(except for ml_inf
) instances using PyTorch framework, provide the data type (dtype) of the model’s input. “float32”
is used if “DTYPE”
is not specified. Options for data type are:“float”
or “float32”
.“int64”
or “long”
.{“dtype” : “float32”}
.CPU
: Compilation for CPU supports the following compiler options.mcpu
: CPU micro-architecture. For example, {‘mcpu’: ‘skylake-avx512’}
mattr
: CPU flags. For example, {‘mattr’: [’+neon’, ‘+vfpv4’]}
ARM
: Details of ARM CPU compilations.NEON
: NEON is an implementation of the Advanced SIMD extension used in ARMv7 processors. For example, add {‘mattr’: [’+neon’]}
to the compiler options if compiling for ARM 32-bit platform with the NEON support.NVIDIA
: Compilation for NVIDIA GPU supports the following compiler options.gpu_code
: Specifies the targeted architecture.trt-ver
: Specifies the TensorRT versions in x.y.z. format.cuda-ver
: Specifies the CUDA version in x.y format.{‘gpu-code’: ‘sm_72’, ’trt-ver’: ‘6.0.1’, ‘cuda-ver’: ‘10.1’}
ANDROID
: Compilation for the Android OS supports the following compiler options:ANDROID_PLATFORM
: Specifies the Android API levels. Available levels range from 21 to 29. For example, {‘ANDROID_PLATFORM’: 28}
.mattr
: Add {‘mattr’: [’+neon’]}
to compiler options if compiling for ARM 32-bit platform with NEON support.INFERENTIA
: Compilation for target ml_inf1 uses compiler options passed in as a JSON string. For example, “CompilerOptions”: “"–verbose 1 –num-neuroncores 2 -O2""
. For information about supported compiler options, see Neuron Compiler CLI Reference Guide.CoreML
: Compilation for the CoreML OutputConfig TargetDevice
supports the following compiler options:class_labels
: Specifies the classification labels file name inside input tar.gz file. For example, {“class_labels”: “imagenet_labels_1000.txt”}
. Labels inside the txt file should be separated by newlines.kms_key_id
STRING
KmsKeyId
1234abcd-12ab-34cd-56ef-1234567890ab
arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
alias/ExampleAlias
arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
s3_output_location
STRING
S3OutputLocation
s3://bucket-name/key-name-prefix
.target_device
STRING
TargetDevice
TargetPlatform
. ml_trn1
is available only in US East (N. Virginia) Region, and ml_inf2
is available only in US East (Ohio) Region.target_platform
STRUCT
TargetPlatform
TargetDevice
. The following examples show how to configure the TargetPlatform
and CompilerOptions
JSON strings for popular target platforms:“TargetPlatform”: {“Os”: “LINUX”, “Arch”: “ARM_EABIHF”},
“CompilerOptions”: {‘mattr’: [’+neon’]}
“TargetPlatform”: {“Os”: “LINUX”, “Arch”: “ARM64”, “Accelerator”: “NVIDIA”},
“CompilerOptions”: {‘gpu-code’: ‘sm_62’, ’trt-ver’: ‘6.0.1’, ‘cuda-ver’: ‘10.0’}
“TargetPlatform”: {“Os”: “LINUX”, “Arch”: “X86_64”, “Accelerator”: “NVIDIA”},
“CompilerOptions”: {‘mcpu’: ‘skylake-avx512’}
“TargetPlatform”: {“Os”: “LINUX”, “Arch”: “ARM64”, “Accelerator”: “MALI”}
“TargetPlatform”: {“Os”: “ANDROID”, “Arch”: “ARM_EABI”},
“CompilerOptions”: {‘ANDROID_PLATFORM’: 25, ‘mattr’: [’+neon’]}
“TargetPlatform”: {“Os”: “ANDROID”, “Arch”: “ARM64”},
“CompilerOptions”: {‘ANDROID_PLATFORM’: 29}
accelerator
STRING
Accelerator
NVIDIA
: Nvidia graphics processing unit. It also requires gpu-code
, trt-ver
, cuda-ver
compiler optionsMALI
: ARM Mali graphics processorINTEL_GRAPHICS
: Integrated Intel graphicsarch
STRING
Arch
X86_64
: 64-bit version of the x86 instruction set.X86
: 32-bit version of the x86 instruction set.ARM64
: ARMv8 64-bit CPU.ARM_EABIHF
: ARMv7 32-bit, Hard Float.ARM_EABI
: ARMv7 32-bit, Soft Float. Used by Android 32-bit ARM platform.os
STRING
Os
LINUX
: Linux-based operating systems.ANDROID
: Android operating systems. Android API level can be specified using the ANDROID_PLATFORM
compiler option. For example, “CompilerOptions”: {‘ANDROID_PLATFORM’: 28}
role_arn
Type: STRING
Provider name: RoleArn
Description: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI assumes to perform the model compilation job.
stopping_condition
Type: STRUCT
Provider name: StoppingCondition
Description: Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker AI ends the compilation job. Use this API to cap model training costs.
max_pending_time_in_seconds
INT32
MaxPendingTimeInSeconds
Pending
job states count against the MaxPendingTimeInSeconds
limit. The following scenarios do not increment the MaxPendingTimeInSeconds
counter:Scheduled
state: Jobs queued (in Pending
status) before a plan’s start date (waiting for scheduled start time)Pending
status between two capacity reservation periodsMaxPendingTimeInSeconds
only increments when jobs are actively waiting for capacity in an Active
plan.max_runtime_in_seconds
INT32
MaxRuntimeInSeconds
TimeOut
error is generated. We recommend starting with 900 seconds and increasing as necessary based on your model. For all other jobs, if the job does not complete during this time, SageMaker ends the job. When RetryStrategy
is specified in the job request, MaxRuntimeInSeconds
specifies the maximum time for all of the attempts in total, not each individual attempt. The default value is 1 day. The maximum value is 28 days. The maximum time that a TrainingJob
can run in total, including any time spent publishing metrics or archiving and uploading models after it has been stopped, is 30 days.max_wait_time_in_seconds
INT32
MaxWaitTimeInSeconds
MaxRuntimeInSeconds
. If the job does not complete during this time, SageMaker ends the job. When RetryStrategy
is specified in the job request, MaxWaitTimeInSeconds
specifies the maximum time for all of the attempts in total, not each individual attempt.tags
Type: UNORDERED_LIST_STRING
vpc_config
Type: STRUCT
Provider name: VpcConfig
Description: A VpcConfig object that specifies the VPC that you want your compilation job to connect to. Control access to your models by configuring the VPC. For more information, see Protect Compilation Jobs by Using an Amazon Virtual Private Cloud.
security_group_ids
UNORDERED_LIST_STRING
SecurityGroupIds
sg-xxxxxxxx
. Specify the security groups for the VPC that is specified in the Subnets
field.subnets
UNORDERED_LIST_STRING
Subnets