- 필수 기능
- 시작하기
- Glossary
- 표준 속성
- Guides
- Agent
- 통합
- 개방형텔레메트리
- 개발자
- Administrator's Guide
- API
- Datadog Mobile App
- CoScreen
- Cloudcraft
- 앱 내
- 서비스 관리
- 인프라스트럭처
- 애플리케이션 성능
- APM
- Continuous Profiler
- 스팬 시각화
- 데이터 스트림 모니터링
- 데이터 작업 모니터링
- 디지털 경험
- 소프트웨어 제공
- 보안
- AI Observability
- 로그 관리
- 관리
",t};e.buildCustomizationMenuUi=t;function n(e){let t='
",t}function s(e){let n=e.filter.currentValue||e.filter.defaultValue,t='${e.filter.label}
`,e.filter.options.forEach(s=>{let o=s.id===n;t+=``}),t+="${e.filter.label}
`,t+=`account_id
Type: STRING
auto_ml_job_arn
Type: STRING
Provider name: AutoMLJobArn
Description: Returns the ARN of the AutoML job.
auto_ml_job_artifacts
Type: STRUCT
Provider name: AutoMLJobArtifacts
Description: Returns information on the job’s artifacts found in AutoMLJobArtifacts
.
candidate_definition_notebook_location
STRING
CandidateDefinitionNotebookLocation
data_exploration_notebook_location
STRING
DataExplorationNotebookLocation
auto_ml_job_config
Type: STRUCT
Provider name: AutoMLJobConfig
Description: Returns the configuration for the AutoML job.
candidate_generation_config
STRUCT
CandidateGenerationConfig
algorithms_config
UNORDERED_LIST_STRUCT
AlgorithmsConfig
TabularJobConfig.Mode
.AlgorithmsConfig
should not be set if the training mode is set on AUTO
.AlgorithmsConfig
is provided, one AutoMLAlgorithms
attribute must be set and one only. If the list of algorithms provided as values for AutoMLAlgorithms
is empty, CandidateGenerationConfig
uses the full set of algorithms for the given training mode.AlgorithmsConfig
is not provided, CandidateGenerationConfig
uses the full set of algorithms for the given training mode.auto_ml_algorithms
UNORDERED_LIST_STRING
AutoMLAlgorithms
TabularJobConfig
: ENSEMBLING
or HYPERPARAMETER_TUNING
). Choose a minimum of 1 algorithm.ENSEMBLING
mode:HYPERPARAMETER_TUNING
mode:TimeSeriesForecastingJobConfig
:feature_specification_s3_uri
STRING
FeatureSpecificationS3Uri
FeatureAttributeNames
(optional) in JSON format as shown below: { “FeatureAttributeNames”:[“col1”, “col2”, …] }
. You can also specify the data type of the feature (optional) in the format shown below: { “FeatureDataTypes”:{“col1”:“numeric”, “col2”:“categorical” … } }
numeric
, categorical
, text
, and datetime
. In HPO mode, Autopilot can support numeric
, categorical
, text
, datetime
, and sequence
. If only FeatureDataTypes
is provided, the column keys (col1
, col2
,..) should be a subset of the column names in the input data. If both FeatureDataTypes
and FeatureAttributeNames
are provided, then the column keys should be a subset of the column names provided in FeatureAttributeNames
. The key name FeatureAttributeNames
is fixed. The values listed in [“col1”, “col2”, …]
are case sensitive and should be a list of strings containing unique values that are a subset of the column names in the input data. The list of columns provided must not include the target column.completion_criteria
STRUCT
CompletionCriteria
max_auto_ml_job_runtime_in_seconds
INT32
MaxAutoMLJobRuntimeInSeconds
max_candidates
INT32
MaxCandidates
max_runtime_per_training_job_in_seconds
INT32
MaxRuntimePerTrainingJobInSeconds
CreateAutoMLJobV2
), this field controls the runtime of the job candidate. For TextGenerationJobConfig problem types, the maximum time defaults to 72 hours (259200 seconds).data_split_config
STRUCT
DataSplitConfig
validation_fraction
FLOAT
ValidationFraction
mode
STRING
Mode
AUTO
. In AUTO
mode, Autopilot chooses ENSEMBLING
for datasets smaller than 100 MB, and HYPERPARAMETER_TUNING
for larger ones. The ENSEMBLING
mode uses a multi-stack ensemble model to predict classification and regression tasks directly from your dataset. This machine learning mode combines several base models to produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions from contributing members. A multi-stack ensemble model can provide better performance over a single model by combining the predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING
mode. The HYPERPARAMETER_TUNING
(HPO) mode uses the best hyperparameters to train the best version of a model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO finds the best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING
mode.security_config
STRUCT
SecurityConfig
enable_inter_container_traffic_encryption
BOOLEAN
EnableInterContainerTrafficEncryption
volume_kms_key_id
STRING
VolumeKmsKeyId
vpc_config
STRUCT
VpcConfig
security_group_ids
UNORDERED_LIST_STRING
SecurityGroupIds
sg-xxxxxxxx
. Specify the security groups for the VPC that is specified in the Subnets
field.subnets
UNORDERED_LIST_STRING
Subnets
auto_ml_job_name
Type: STRING
Provider name: AutoMLJobName
Description: Returns the name of the AutoML job.
auto_ml_job_objective
Type: STRUCT
Provider name: AutoMLJobObjective
Description: Returns the job’s objective.
metric_name
STRING
MetricName
MAE
, MSE
, R2
, RMSE
Accuracy
, AUC
, BalancedAccuracy
, F1
, Precision
, Recall
Accuracy
, BalancedAccuracy
, F1macro
, PrecisionMacro
, RecallMacro
MSE
.F1
.Accuracy
.Accuracy
For a description of each metric, see Autopilot metrics for text and image classification.Accuracy
RMSE
, wQL
, Average wQL
, MASE
, MAPE
, WAPE
For a description of each metric, see Autopilot metrics for time-series forecasting.AverageWeightedQuantileLoss
AutoMLJobObjective
field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see Metrics for fine-tuning LLMs in Autopilot.auto_ml_job_secondary_status
Type: STRING
Provider name: AutoMLJobSecondaryStatus
Description: Returns the secondary status of the AutoML job.
auto_ml_job_status
Type: STRING
Provider name: AutoMLJobStatus
Description: Returns the status of the AutoML job.
best_candidate
Type: STRUCT
Provider name: BestCandidate
Description: The best model candidate selected by SageMaker AI Autopilot using both the best objective metric and lowest InferenceLatency for an experiment.
candidate_name
STRING
CandidateName
candidate_properties
STRUCT
CandidateProperties
candidate_artifact_locations
STRUCT
CandidateArtifactLocations
backtest_results
STRING
BacktestResults
explainability
STRING
Explainability
model_insights
STRING
ModelInsights
candidate_metrics
UNORDERED_LIST_STRUCT
CandidateMetrics
metric_name
STRING
MetricName
set
STRING
Set
standard_metric_name
STRING
StandardMetricName
Autopilot candidate metrics
.value
FLOAT
Value
candidate_status
STRING
CandidateStatus
candidate_steps
UNORDERED_LIST_STRUCT
CandidateSteps
candidate_step_arn
STRING
CandidateStepArn
candidate_step_name
STRING
CandidateStepName
candidate_step_type
STRING
CandidateStepType
creation_time
TIMESTAMP
CreationTime
end_time
TIMESTAMP
EndTime
failure_reason
STRING
FailureReason
final_auto_ml_job_objective_metric
STRUCT
FinalAutoMLJobObjectiveMetric
metric_name
STRING
MetricName
standard_metric_name
STRING
StandardMetricName
type
STRING
Type
value
FLOAT
Value
inference_container_definitions
STRING
InferenceContainerDefinitions
CreateAutoMLJobV2
) related to image or text classification problem types only.inference_containers
UNORDERED_LIST_STRUCT
InferenceContainers
environment
MAP_STRING_STRING
Environment
image
STRING
Image
model_data_url
STRING
ModelDataUrl
last_modified_time
TIMESTAMP
LastModifiedTime
objective_status
STRING
ObjectiveStatus
creation_time
Type: TIMESTAMP
Provider name: CreationTime
Description: Returns the creation time of the AutoML job.
end_time
Type: TIMESTAMP
Provider name: EndTime
Description: Returns the end time of the AutoML job.
failure_reason
Type: STRING
Provider name: FailureReason
Description: Returns the failure reason for an AutoML job, when applicable.
generate_candidate_definitions_only
Type: BOOLEAN
Provider name: GenerateCandidateDefinitionsOnly
Description: Indicates whether the output for an AutoML job generates candidate definitions only.
input_data_config
Type: UNORDERED_LIST_STRUCT
Provider name: InputDataConfig
Description: Returns the input data configuration for the AutoML job.
channel_type
STRING
ChannelType
enum
string. The default value is training
. Channels for training and validation must share the same ContentType
and TargetAttributeName
. For information on specifying training and validation channel types, see How to specify training and validation datasets.compression_type
STRING
CompressionType
Gzip
or None
. The default value is None
.content_type
STRING
ContentType
text/csv;header=present
or x-application/vnd.amazon+parquet
. The default value is text/csv;header=present
.data_source
STRUCT
DataSource
s3_data_source
STRUCT
S3DataSource
s3_data_type
STRING
S3DataType
S3Prefix
, S3Uri
identifies a key name prefix. SageMaker AI uses all objects that match the specified key name prefix for model training. The S3Prefix
should have the following format: s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE
ManifestFile
, S3Uri
identifies an object that is a manifest file containing a list of object keys that you want SageMaker AI to use for model training. A ManifestFile
should have the format shown below: [ {“prefix”: “s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/”},
“DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1”,
“DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2”,
… “DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N” ]
AugmentedManifestFile
, S3Uri
identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile
is available for V2 API jobs only (for example, for jobs created by calling CreateAutoMLJobV2
). Here is a minimal, single-record example of an AugmentedManifestFile
: {“source-ref”: “s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg”,
“label-metadata”: {“class-name”: “cat”
} For more information on AugmentedManifestFile
, see Provide Dataset Metadata to Training Jobs with an Augmented Manifest File.s3_uri
STRING
S3Uri
sample_weight_attribute_name
STRING
SampleWeightAttributeName
target_attribute_name
STRING
TargetAttributeName
last_modified_time
Type: TIMESTAMP
Provider name: LastModifiedTime
Description: Returns the job’s last modified time.
model_deploy_config
Type: STRUCT
Provider name: ModelDeployConfig
Description: Indicates whether the model was deployed automatically to an endpoint and the name of that endpoint if deployed automatically.
auto_generate_endpoint_name
BOOLEAN
AutoGenerateEndpointName
True
to automatically generate an endpoint name for a one-click Autopilot model deployment; set to False
otherwise. The default value is False
. AutoGenerateEndpointName
to True
, do not specify the EndpointName
; otherwise a 400 error is thrown.endpoint_name
STRING
EndpointName
EndpointName
if and only if you set AutoGenerateEndpointName
to False
; otherwise a 400 error is thrown.model_deploy_result
Type: STRUCT
Provider name: ModelDeployResult
Description: Provides information about endpoint for the model deployment.
endpoint_name
STRING
EndpointName
output_data_config
Type: STRUCT
Provider name: OutputDataConfig
Description: Returns the job’s output data config.
kms_key_id
STRING
KmsKeyId
s3_output_path
STRING
S3OutputPath
partial_failure_reasons
Type: UNORDERED_LIST_STRUCT
Provider name: PartialFailureReasons
Description: Returns a list of reasons for partial failures within an AutoML job.
partial_failure_message
STRING
PartialFailureMessage
problem_type
Type: STRING
Provider name: ProblemType
Description: Returns the job’s problem type.
resolved_attributes
Type: STRUCT
Provider name: ResolvedAttributes
Description: Contains ProblemType
, AutoMLJobObjective
, and CompletionCriteria
. If you do not provide these values, they are inferred.
auto_ml_job_objective
STRUCT
AutoMLJobObjective
metric_name
STRING
MetricName
MAE
, MSE
, R2
, RMSE
Accuracy
, AUC
, BalancedAccuracy
, F1
, Precision
, Recall
Accuracy
, BalancedAccuracy
, F1macro
, PrecisionMacro
, RecallMacro
MSE
.F1
.Accuracy
.Accuracy
For a description of each metric, see Autopilot metrics for text and image classification.Accuracy
RMSE
, wQL
, Average wQL
, MASE
, MAPE
, WAPE
For a description of each metric, see Autopilot metrics for time-series forecasting.AverageWeightedQuantileLoss
AutoMLJobObjective
field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see Metrics for fine-tuning LLMs in Autopilot.completion_criteria
STRUCT
CompletionCriteria
max_auto_ml_job_runtime_in_seconds
INT32
MaxAutoMLJobRuntimeInSeconds
max_candidates
INT32
MaxCandidates
max_runtime_per_training_job_in_seconds
INT32
MaxRuntimePerTrainingJobInSeconds
CreateAutoMLJobV2
), this field controls the runtime of the job candidate. For TextGenerationJobConfig problem types, the maximum time defaults to 72 hours (259200 seconds).problem_type
STRING
ProblemType
role_arn
Type: STRING
Provider name: RoleArn
Description: The ARN of the IAM role that has read permission to the input data location and write permission to the output data location in Amazon S3.
tags
Type: UNORDERED_LIST_STRING