Database Monitoring은 주요 메트릭, 운영 샘플, Explain 실행 계획 및 복제 상태 변경에 액세스를 제공하여 MongoDB 호환성을 포함한 Amazon DocumentDB과 관련한 포괄적 인사이트를 제공합니다. Amazon DocumentDB용 Database Monitoring의 혜택을 누리려면 Datadog Agent가 Amazon DocumentDB 인스턴스에 설치 및 구성되었는지 확인합니다. 이 가이드는 Amazon DocumentDB용 Database Monitoring를 설정 단계를 설명합니다.
시작 전 참고 사항
지원되는 Amazon DocumentDB 주요 버전
4.0.0, 5.0.0
지원되는 Amazon DocumentDB 클러스터 유형
인스턴스 기반 클러스터
참고: Amazon DocumentDB Elastic 클러스터는 지원되지 않습니다.
Supported Agent versions
7.59.0+
Performance impact
The default Agent configuration for Database Monitoring is conservative, but you can adjust settings such as the collection interval and operation sampling rate to better suit your needs. For most workloads, the Agent represents less than one percent of query execution time on the database and less than one percent of CPU.
Connection strings or SRV strings
Although Amazon DocumentDB connection strings provide many benefits such as automatic failover and load balancing, the Datadog Agent must connect directly to the DocumentDB instance being monitored. If the Agent connects to a different DocumentDB instance while it is running (as in the case of failover, load balancing, and so on), the Agent calculates the difference in statistics between two hosts, producing inaccurate metrics.
Data security considerations
Read about how Database Management handles sensitive information for information about what data the Agent collects from your databases and how to ensure it is secure.
Store your password using secret management software such as Vault. You can then reference this password as ENC[<SECRET_NAME>] in your Agent configuration files: for example, ENC[datadog_user_database_password]. See Secrets Management for more information.
The examples on this page use datadog_user_database_password to refer to the name of the secret where your password is stored. It is possible to reference your password in plain text, but this is not recommended.
에이전트 설치 및 구성
Amazon DocumentDB Cluster를 모니터링하려면 Amazon DocumentDB Cluster에 원격으로 액세스할 수 있는 호스트에서 Datadog Agent를 설치하고 구성해야 합니다. 이 호스트는 Linux 호스트, Docker 컨테이너 또는 Kubernetes 포드일 수 있습니다.
구성 파일 생성
To monitor an Amazon DocumentDB replica set, the Agent needs to connect to all members (including the arbiter) of the replica set.
Use the following configuration block as an example to configure the Agent to connect to a replica set member:
init_config:instances:## @param hosts - required## Specify the hostname, IP address, or UNIX domain socket of## a mongod instance as listed in the replica set configuration.## If the port number is not specified, the default port 27017 is used.#- hosts:- <HOST>:<PORT>## @param username - string - optional## The username to use for authentication.#username:datadog## @param password - string - optional## The password to use for authentication.#password:'ENC[datadog_user_database_password]'## @param options - mapping - optional## Connection options. For a complete list, see:## https://docs.mongodb.com/manual/reference/connection-string/#connections-connection-options#options:authSource:admin## @param tls - boolean - required## Required 'true' in Amazon DocumentDB.tls:true## @param tls_ca_file - string - required## Path to the CA certificate file used to verify the server certificate.tls_ca_file:<CERT_FILE_PATH>## @param dbm - boolean - optional## Set to true to enable Database Monitoring.#dbm:true## @param cluster_name - string - optional## The unique name of the cluster to which the monitored MongoDB instance belongs.## Used to group MongoDB instances in a MongoDB cluster.## cluster_name should follow Datadog tags naming conventions. See:## https://docs.datadoghq.com/developers/guide/what-best-practices-are-recommended-for-naming-metrics-and-tags/#rules-and-best-practices-for-naming-tags## Required when `dbm` is enabled.#cluster_name:<MONGO_CLUSTER_NAME>## @param reported_database_hostname - string - optional## Set the reported database hostname for the connected MongoDB instance.## This value overrides the MongoDB hostname detected by the Agent## from the MongoDB admin command serverStatus.host.#reported_database_hostname:<DATABASE_HOSTNAME_OVERRIDE>## @param additional_metrics - list of strings - optional## List of additional metrics to collect. Available options are:## - metrics.commands: Use of database commands## - tcmalloc: TCMalloc memory allocator## - top: Usage statistics for each collection## - collection: Metrics of the specified collections#additional_metrics:['metrics.commands','tcmalloc','top','collection']## @param collections_indexes_stats - boolean - optional## Set to true to collect index statistics for the specified collections.## Requires `collections` to be set.#collections_indexes_stats:true## @param database_autodiscovery - mapping - optional## Enable database autodiscovery to automatically collect metrics from all your MongoDB databases.#database_autodiscovery:## @param enabled - boolean - required## Enable database autodiscovery.#enabled:true## @param include - list of strings - optional## List of databases to include in the autodiscovery. Use regular expressions to match multiple databases.## For example, to include all databases starting with "mydb", use "^mydb.*".## By default, include is set to ".*" and all databases are included.#include:- '^mydb.*'## @param exclude - list of strings - optional## List of databases to exclude from the autodiscovery. Use regular expressions to match multiple databases.## For example, to exclude all databases starting with "mydb", use "^mydb.*".## When the exclude list conflicts with include list, the exclude list takes precedence.#exclude:- '^mydb2.*'- 'admin$'## @param max_databases - integer - optional## Maximum number of databases to collect metrics from. The default value is 100.#max_databases:100## @param refresh_interval - integer - optional## Interval in seconds to refresh the list of databases. The default value is 600 seconds.#refresh_interval:600
An example configuration for a replica set with 1 primary and 2 secondaries is as follows:
Amazon DocumentDB 통합 텔레메트리를 사용해
Amazon DocumentDB 통합을 설치하여 인스턴스를 강화하려면, 구성에 이 섹션을 추가합니다.
## @param aws - 매핑 - 선택 사항## 이 블록은 Amazon DocumentDB 인스턴스의 구성을 정의합니다.## 이 값은 `dbm: true` 옵션이 설정될 때만 적용됩니다.#aws:## @param instance_endpoint - 문자열 - 선택 사항## Agent 연결 대상 인스턴스의 Endpoint.Address와 동일합니다.## `host`의 값이 이미 인스턴스 엔드포인트로 구성되어 있을 경우 이 값은 선택 사항입니다.#### 인스턴스 엔드포인트에 관한 자세한 정보를 보려면## AWS 설명서를 확인하세요. https://docs.aws.amazon.com/documentdb/latest/developerguide/API_Endpoint.html#instance_endpoint:<AMAZON_DOCUMENTDB_ENDPOINT>## @param cluster_identifier - 문자열 - 선택 사항## Agent 연결 대상 인스턴스의 클러스터 식별자와 동일합니다.## `cluster_name`의 값이 이미 클러스터 식별자로 구성되어 있을 경우 이 값은 선택 사항입니다.#### 클러스터 식별자에 관한 상세한 정보를 보려면## AWS 설명서를 확인하세요. https://docs.aws.amazon.com/documentdb/latest/developerguide/API_DBCluster.html#cluster_identifier:<AMAZON_DOCUMENTDB_CLUSTER_IDENTIFIER>
Agent 설정
Place the MongoDB Agent configuration file created in the previous step in /etc/datadog-agent/conf.d/mongo.d/conf.yaml. See the sample conf file for all available configuration options.
To configure the Database Monitoring Agent running in a Docker container, set the Autodiscovery Integration Templates as Docker labels on your Agent container.
The MongoDB check is included in the Datadog Agent. No additional installation is necessary.
Note: The Agent must have read permission on the Docker socket for autodiscovery of labels to work.
Add the configuration details for the MongoDB check from the previous step in the com.datadoghq.ad.checks label. See the sample conf file for all available configuration options.
If you have a Kubernetes cluster, use the Datadog Cluster Agent for Database Monitoring.
If cluster checks are not already enabled in your Kubernetes cluster, follow the instructions to enable cluster checks. You can configure the Cluster Agent either with static files mounted in the Cluster Agent container, or by using Kubernetes service annotations.
Command line with Helm
Execute the following Helm command to install the Datadog Cluster Agent on your Kubernetes cluster. Replace the values to match your account and environment:
To configure a cluster check with a mounted configuration file, mount the configuration file in the Cluster Agent container on the path: /conf.d/mongo.yaml:
cluster_check:true# Make sure to include this flaginit_config:instances:- hosts:- <HOST>:<PORT>username:datadogpassword:"ENC[datadog_user_database_password]"options:authSource:admindbm:truecluster_name:<MONGO_CLUSTER_NAME>reported_database_hostname:<DATABASE_HOSTNAME_OVERRIDE>database_autodiscovery:enabled:trueadditional_metrics:["metrics.commands","tcmalloc","top","collection"]collections_indexes_stats:true
Configure with Kubernetes service annotations
Rather than mounting a file, you can declare the instance configuration as a Kubernetes Service. To configure this check for an Agent running on Kubernetes, create a Service in the same namespace as the Datadog Cluster Agent:
The Cluster Agent automatically registers this configuration and begins running the MongoDB integration.
To avoid exposing the datadog user’s password in plain text, use the Agent’s secret management package and declare the password using the ENC[] syntax.
Database Monitoring for Amazon DocumentDB gathers operation samples using the currentOp command. This command provides information about operations that are currently being executed on the DocumentDB instance. Additionally, Database Monitoring collects explain plans for the read operation samples using the explain command, offering detailed insights into the query execution plans.
Replication state changes
Database Monitoring for Amazon DocumentDB generates an event each time there is a change in the replication state within the DocumentDB instance. This ensures that any changes in replication are promptly detected and reported.
Collection of schemas and indexes
Database Monitoring for Amazon DocumentDB collects inferred schemas and indexes of Amazon DocumentDB collections. This information is used to provide insights into the structure and organization of your collections.
When analyzing Amazon DocumentDB collections, Datadog collects inferred schema information by sampling documents using the $sample aggregation stage. From this analysis, only metadata about the schema is gathered and sent to Datadog, including field names, field prevalence (how often each field appears), and their respective data types. Datadog does not collect or transmit the actual content of documents or any customer business data. This ensures that sensitive data remains protected while still providing valuable insights into the structure and organization of your collections.