- 필수 기능
- 시작하기
- Glossary
- 표준 속성
- Guides
- Agent
- 통합
- 개방형텔레메트리
- 개발자
- Administrator's Guide
- API
- Datadog Mobile App
- CoScreen
- Cloudcraft
- 앱 내
- 서비스 관리
- 인프라스트럭처
- 애플리케이션 성능
- APM
- Continuous Profiler
- 스팬 시각화
- 데이터 스트림 모니터링
- 데이터 작업 모니터링
- 디지털 경험
- 소프트웨어 제공
- 보안
- AI Observability
- 로그 관리
- 관리
",t};e.buildCustomizationMenuUi=t;function n(e){let t='
",t}function s(e){let n=e.filter.currentValue||e.filter.defaultValue,t='${e.filter.label}
`,e.filter.options.forEach(s=>{let o=s.id===n;t+=``}),t+="${e.filter.label}
`,t+=`Data Observability helps data teams detect, resolve, and prevent issues that impact data quality, performance, and cost. It enables teams to monitor anomalies, troubleshoot faster, and maintain trust in the data powering downstream systems.
Datadog makes this possible by monitoring key signals across your data stack, including metrics, metadata, lineage, and logs. These signals help detect issues early and support reliable, high-quality data.
With Data Observability, you can:
Datadog continuously tracks metrics and metadata, including:
You can configure static thresholds or rely on automatic anomaly detection to identify unexpected changes, including:
Data Observability provides end-to-end lineage, helping you:
Understand how pipeline activity and infrastructure events impact your data. Datadog ingests logs and metadata from pipeline tools and user interactions to provide context for data quality issues, including:
This operational context helps you trace the source of data incidents and respond faster.