- 필수 기능
- 시작하기
- Glossary
- 표준 속성
- Guides
- Agent
- 통합
- 개방형텔레메트리
- 개발자
- Administrator's Guide
- API
- Datadog Mobile App
- CoScreen
- Cloudcraft
- 앱 내
- 서비스 관리
- 인프라스트럭처
- 애플리케이션 성능
- APM
- Continuous Profiler
- 스팬 시각화
- 데이터 스트림 모니터링
- 데이터 작업 모니터링
- 디지털 경험
- 소프트웨어 제공
- 보안
- AI Observability
- 로그 관리
- 관리
Manage configuration of log-based metrics for your organization. You need an API and non-scoped application key with Admin rights to interact with these endpoints.
GET https://api.ap1.datadoghq.com/api/v2/logs/config/metricshttps://api.datadoghq.eu/api/v2/logs/config/metricshttps://api.ddog-gov.com/api/v2/logs/config/metricshttps://api.datadoghq.com/api/v2/logs/config/metricshttps://api.us3.datadoghq.com/api/v2/logs/config/metricshttps://api.us5.datadoghq.com/api/v2/logs/config/metrics
Get the list of configured log-based metrics with their definitions.
OK
All the available log-based metric objects.
항목
유형
설명
data
[object]
A list of log-based metric objects.
attributes
object
The object describing a Datadog log-based metric.
compute
object
The compute rule to compute the log-based metric.
aggregation_type
enum
The type of aggregation to use.
Allowed enum values: count,distribution
include_percentiles
boolean
Toggle to include or exclude percentile aggregations for distribution metrics.
Only present when the aggregation_type
is distribution
.
path
string
The path to the value the log-based metric will aggregate on (only used if the aggregation type is a "distribution").
filter
object
The log-based metric filter. Logs matching this filter will be aggregated in this metric.
query
string
The search query - following the log search syntax.
group_by
[object]
The rules for the group by.
path
string
The path to the value the log-based metric will be aggregated over.
tag_name
string
Eventual name of the tag that gets created. By default, the path attribute is used as the tag name.
id
string
The name of the log-based metric.
type
enum
The type of the resource. The value should always be logs_metrics.
Allowed enum values: logs_metrics
default: logs_metrics
{
"data": [
{
"attributes": {
"compute": {
"aggregation_type": "distribution",
"include_percentiles": true,
"path": "@duration"
},
"filter": {
"query": "service:web* AND @http.status_code:[200 TO 299]"
},
"group_by": [
{
"path": "@http.status_code",
"tag_name": "status_code"
}
]
},
"id": "logs.page.load.count",
"type": "logs_metrics"
}
]
}
Not Authorized
API error response.
{
"errors": [
"Bad Request"
]
}
Too many requests
API error response.
{
"errors": [
"Bad Request"
]
}
# Curl command
curl -X GET "https://api.ap1.datadoghq.com"https://api.datadoghq.eu"https://api.ddog-gov.com"https://api.datadoghq.com"https://api.us3.datadoghq.com"https://api.us5.datadoghq.com/api/v2/logs/config/metrics" \
-H "Accept: application/json" \
-H "DD-API-KEY: ${DD_API_KEY}" \
-H "DD-APPLICATION-KEY: ${DD_APP_KEY}"
"""
Get all log-based metrics returns "OK" response
"""
from datadog_api_client import ApiClient, Configuration
from datadog_api_client.v2.api.logs_metrics_api import LogsMetricsApi
configuration = Configuration()
with ApiClient(configuration) as api_client:
api_instance = LogsMetricsApi(api_client)
response = api_instance.list_logs_metrics()
print(response)
First install the library and its dependencies and then save the example to example.py
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" python3 "example.py"
# Get all log-based metrics returns "OK" response
require "datadog_api_client"
api_instance = DatadogAPIClient::V2::LogsMetricsAPI.new
p api_instance.list_logs_metrics()
First install the library and its dependencies and then save the example to example.rb
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" rb "example.rb"
// Get all log-based metrics returns "OK" response
package main
import (
"context"
"encoding/json"
"fmt"
"os"
"github.com/DataDog/datadog-api-client-go/v2/api/datadog"
"github.com/DataDog/datadog-api-client-go/v2/api/datadogV2"
)
func main() {
ctx := datadog.NewDefaultContext(context.Background())
configuration := datadog.NewConfiguration()
apiClient := datadog.NewAPIClient(configuration)
api := datadogV2.NewLogsMetricsApi(apiClient)
resp, r, err := api.ListLogsMetrics(ctx)
if err != nil {
fmt.Fprintf(os.Stderr, "Error when calling `LogsMetricsApi.ListLogsMetrics`: %v\n", err)
fmt.Fprintf(os.Stderr, "Full HTTP response: %v\n", r)
}
responseContent, _ := json.MarshalIndent(resp, "", " ")
fmt.Fprintf(os.Stdout, "Response from `LogsMetricsApi.ListLogsMetrics`:\n%s\n", responseContent)
}
First install the library and its dependencies and then save the example to main.go
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" go run "main.go"
// Get all log-based metrics returns "OK" response
import com.datadog.api.client.ApiClient;
import com.datadog.api.client.ApiException;
import com.datadog.api.client.v2.api.LogsMetricsApi;
import com.datadog.api.client.v2.model.LogsMetricsResponse;
public class Example {
public static void main(String[] args) {
ApiClient defaultClient = ApiClient.getDefaultApiClient();
LogsMetricsApi apiInstance = new LogsMetricsApi(defaultClient);
try {
LogsMetricsResponse result = apiInstance.listLogsMetrics();
System.out.println(result);
} catch (ApiException e) {
System.err.println("Exception when calling LogsMetricsApi#listLogsMetrics");
System.err.println("Status code: " + e.getCode());
System.err.println("Reason: " + e.getResponseBody());
System.err.println("Response headers: " + e.getResponseHeaders());
e.printStackTrace();
}
}
}
First install the library and its dependencies and then save the example to Example.java
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" java "Example.java"
// Get all log-based metrics returns "OK" response
use datadog_api_client::datadog;
use datadog_api_client::datadogV2::api_logs_metrics::LogsMetricsAPI;
#[tokio::main]
async fn main() {
let configuration = datadog::Configuration::new();
let api = LogsMetricsAPI::with_config(configuration);
let resp = api.list_logs_metrics().await;
if let Ok(value) = resp {
println!("{:#?}", value);
} else {
println!("{:#?}", resp.unwrap_err());
}
}
First install the library and its dependencies and then save the example to src/main.rs
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" cargo run
/**
* Get all log-based metrics returns "OK" response
*/
import { client, v2 } from "@datadog/datadog-api-client";
const configuration = client.createConfiguration();
const apiInstance = new v2.LogsMetricsApi(configuration);
apiInstance
.listLogsMetrics()
.then((data: v2.LogsMetricsResponse) => {
console.log(
"API called successfully. Returned data: " + JSON.stringify(data)
);
})
.catch((error: any) => console.error(error));
First install the library and its dependencies and then save the example to example.ts
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" tsc "example.ts"
POST https://api.ap1.datadoghq.com/api/v2/logs/config/metricshttps://api.datadoghq.eu/api/v2/logs/config/metricshttps://api.ddog-gov.com/api/v2/logs/config/metricshttps://api.datadoghq.com/api/v2/logs/config/metricshttps://api.us3.datadoghq.com/api/v2/logs/config/metricshttps://api.us5.datadoghq.com/api/v2/logs/config/metrics
Create a metric based on your ingested logs in your organization.
Returns the log-based metric object from the request body when the request is successful.
This endpoint requires the logs_generate_metrics
permission.
The definition of the new log-based metric.
항목
유형
설명
data [required]
object
The new log-based metric properties.
attributes [required]
object
The object describing the Datadog log-based metric to create.
compute [required]
object
The compute rule to compute the log-based metric.
aggregation_type [required]
enum
The type of aggregation to use.
Allowed enum values: count,distribution
include_percentiles
boolean
Toggle to include or exclude percentile aggregations for distribution metrics.
Only present when the aggregation_type
is distribution
.
path
string
The path to the value the log-based metric will aggregate on (only used if the aggregation type is a "distribution").
filter
object
The log-based metric filter. Logs matching this filter will be aggregated in this metric.
query
string
The search query - following the log search syntax.
default: *
group_by
[object]
The rules for the group by.
path [required]
string
The path to the value the log-based metric will be aggregated over.
tag_name
string
Eventual name of the tag that gets created. By default, the path attribute is used as the tag name.
id [required]
string
The name of the log-based metric.
type [required]
enum
The type of the resource. The value should always be logs_metrics.
Allowed enum values: logs_metrics
default: logs_metrics
{
"data": {
"id": "ExampleLogsMetric",
"type": "logs_metrics",
"attributes": {
"compute": {
"aggregation_type": "distribution",
"include_percentiles": true,
"path": "@duration"
}
}
}
}
OK
The log-based metric object.
항목
유형
설명
data
object
The log-based metric properties.
attributes
object
The object describing a Datadog log-based metric.
compute
object
The compute rule to compute the log-based metric.
aggregation_type
enum
The type of aggregation to use.
Allowed enum values: count,distribution
include_percentiles
boolean
Toggle to include or exclude percentile aggregations for distribution metrics.
Only present when the aggregation_type
is distribution
.
path
string
The path to the value the log-based metric will aggregate on (only used if the aggregation type is a "distribution").
filter
object
The log-based metric filter. Logs matching this filter will be aggregated in this metric.
query
string
The search query - following the log search syntax.
group_by
[object]
The rules for the group by.
path
string
The path to the value the log-based metric will be aggregated over.
tag_name
string
Eventual name of the tag that gets created. By default, the path attribute is used as the tag name.
id
string
The name of the log-based metric.
type
enum
The type of the resource. The value should always be logs_metrics.
Allowed enum values: logs_metrics
default: logs_metrics
{
"data": {
"attributes": {
"compute": {
"aggregation_type": "distribution",
"include_percentiles": true,
"path": "@duration"
},
"filter": {
"query": "service:web* AND @http.status_code:[200 TO 299]"
},
"group_by": [
{
"path": "@http.status_code",
"tag_name": "status_code"
}
]
},
"id": "logs.page.load.count",
"type": "logs_metrics"
}
}
Bad Request
API error response.
{
"errors": [
"Bad Request"
]
}
Not Authorized
API error response.
{
"errors": [
"Bad Request"
]
}
Conflict
API error response.
{
"errors": [
"Bad Request"
]
}
Too many requests
API error response.
{
"errors": [
"Bad Request"
]
}
# Curl command
curl -X POST "https://api.ap1.datadoghq.com"https://api.datadoghq.eu"https://api.ddog-gov.com"https://api.datadoghq.com"https://api.us3.datadoghq.com"https://api.us5.datadoghq.com/api/v2/logs/config/metrics" \
-H "Accept: application/json" \
-H "Content-Type: application/json" \
-H "DD-API-KEY: ${DD_API_KEY}" \
-H "DD-APPLICATION-KEY: ${DD_APP_KEY}" \
-d @- << EOF
{
"data": {
"id": "ExampleLogsMetric",
"type": "logs_metrics",
"attributes": {
"compute": {
"aggregation_type": "distribution",
"include_percentiles": true,
"path": "@duration"
}
}
}
}
EOF
// Create a log-based metric returns "OK" response
package main
import (
"context"
"encoding/json"
"fmt"
"os"
"github.com/DataDog/datadog-api-client-go/v2/api/datadog"
"github.com/DataDog/datadog-api-client-go/v2/api/datadogV2"
)
func main() {
body := datadogV2.LogsMetricCreateRequest{
Data: datadogV2.LogsMetricCreateData{
Id: "ExampleLogsMetric",
Type: datadogV2.LOGSMETRICTYPE_LOGS_METRICS,
Attributes: datadogV2.LogsMetricCreateAttributes{
Compute: datadogV2.LogsMetricCompute{
AggregationType: datadogV2.LOGSMETRICCOMPUTEAGGREGATIONTYPE_DISTRIBUTION,
IncludePercentiles: datadog.PtrBool(true),
Path: datadog.PtrString("@duration"),
},
},
},
}
ctx := datadog.NewDefaultContext(context.Background())
configuration := datadog.NewConfiguration()
apiClient := datadog.NewAPIClient(configuration)
api := datadogV2.NewLogsMetricsApi(apiClient)
resp, r, err := api.CreateLogsMetric(ctx, body)
if err != nil {
fmt.Fprintf(os.Stderr, "Error when calling `LogsMetricsApi.CreateLogsMetric`: %v\n", err)
fmt.Fprintf(os.Stderr, "Full HTTP response: %v\n", r)
}
responseContent, _ := json.MarshalIndent(resp, "", " ")
fmt.Fprintf(os.Stdout, "Response from `LogsMetricsApi.CreateLogsMetric`:\n%s\n", responseContent)
}
First install the library and its dependencies and then save the example to main.go
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" go run "main.go"
// Create a log-based metric returns "OK" response
import com.datadog.api.client.ApiClient;
import com.datadog.api.client.ApiException;
import com.datadog.api.client.v2.api.LogsMetricsApi;
import com.datadog.api.client.v2.model.LogsMetricCompute;
import com.datadog.api.client.v2.model.LogsMetricComputeAggregationType;
import com.datadog.api.client.v2.model.LogsMetricCreateAttributes;
import com.datadog.api.client.v2.model.LogsMetricCreateData;
import com.datadog.api.client.v2.model.LogsMetricCreateRequest;
import com.datadog.api.client.v2.model.LogsMetricResponse;
import com.datadog.api.client.v2.model.LogsMetricType;
public class Example {
public static void main(String[] args) {
ApiClient defaultClient = ApiClient.getDefaultApiClient();
LogsMetricsApi apiInstance = new LogsMetricsApi(defaultClient);
LogsMetricCreateRequest body =
new LogsMetricCreateRequest()
.data(
new LogsMetricCreateData()
.id("ExampleLogsMetric")
.type(LogsMetricType.LOGS_METRICS)
.attributes(
new LogsMetricCreateAttributes()
.compute(
new LogsMetricCompute()
.aggregationType(LogsMetricComputeAggregationType.DISTRIBUTION)
.includePercentiles(true)
.path("@duration"))));
try {
LogsMetricResponse result = apiInstance.createLogsMetric(body);
System.out.println(result);
} catch (ApiException e) {
System.err.println("Exception when calling LogsMetricsApi#createLogsMetric");
System.err.println("Status code: " + e.getCode());
System.err.println("Reason: " + e.getResponseBody());
System.err.println("Response headers: " + e.getResponseHeaders());
e.printStackTrace();
}
}
}
First install the library and its dependencies and then save the example to Example.java
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" java "Example.java"
"""
Create a log-based metric returns "OK" response
"""
from datadog_api_client import ApiClient, Configuration
from datadog_api_client.v2.api.logs_metrics_api import LogsMetricsApi
from datadog_api_client.v2.model.logs_metric_compute import LogsMetricCompute
from datadog_api_client.v2.model.logs_metric_compute_aggregation_type import LogsMetricComputeAggregationType
from datadog_api_client.v2.model.logs_metric_create_attributes import LogsMetricCreateAttributes
from datadog_api_client.v2.model.logs_metric_create_data import LogsMetricCreateData
from datadog_api_client.v2.model.logs_metric_create_request import LogsMetricCreateRequest
from datadog_api_client.v2.model.logs_metric_type import LogsMetricType
body = LogsMetricCreateRequest(
data=LogsMetricCreateData(
id="ExampleLogsMetric",
type=LogsMetricType.LOGS_METRICS,
attributes=LogsMetricCreateAttributes(
compute=LogsMetricCompute(
aggregation_type=LogsMetricComputeAggregationType.DISTRIBUTION,
include_percentiles=True,
path="@duration",
),
),
),
)
configuration = Configuration()
with ApiClient(configuration) as api_client:
api_instance = LogsMetricsApi(api_client)
response = api_instance.create_logs_metric(body=body)
print(response)
First install the library and its dependencies and then save the example to example.py
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" python3 "example.py"
# Create a log-based metric returns "OK" response
require "datadog_api_client"
api_instance = DatadogAPIClient::V2::LogsMetricsAPI.new
body = DatadogAPIClient::V2::LogsMetricCreateRequest.new({
data: DatadogAPIClient::V2::LogsMetricCreateData.new({
id: "ExampleLogsMetric",
type: DatadogAPIClient::V2::LogsMetricType::LOGS_METRICS,
attributes: DatadogAPIClient::V2::LogsMetricCreateAttributes.new({
compute: DatadogAPIClient::V2::LogsMetricCompute.new({
aggregation_type: DatadogAPIClient::V2::LogsMetricComputeAggregationType::DISTRIBUTION,
include_percentiles: true,
path: "@duration",
}),
}),
}),
})
p api_instance.create_logs_metric(body)
First install the library and its dependencies and then save the example to example.rb
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" rb "example.rb"
// Create a log-based metric returns "OK" response
use datadog_api_client::datadog;
use datadog_api_client::datadogV2::api_logs_metrics::LogsMetricsAPI;
use datadog_api_client::datadogV2::model::LogsMetricCompute;
use datadog_api_client::datadogV2::model::LogsMetricComputeAggregationType;
use datadog_api_client::datadogV2::model::LogsMetricCreateAttributes;
use datadog_api_client::datadogV2::model::LogsMetricCreateData;
use datadog_api_client::datadogV2::model::LogsMetricCreateRequest;
use datadog_api_client::datadogV2::model::LogsMetricType;
#[tokio::main]
async fn main() {
let body = LogsMetricCreateRequest::new(LogsMetricCreateData::new(
LogsMetricCreateAttributes::new(
LogsMetricCompute::new(LogsMetricComputeAggregationType::DISTRIBUTION)
.include_percentiles(true)
.path("@duration".to_string()),
),
"ExampleLogsMetric".to_string(),
LogsMetricType::LOGS_METRICS,
));
let configuration = datadog::Configuration::new();
let api = LogsMetricsAPI::with_config(configuration);
let resp = api.create_logs_metric(body).await;
if let Ok(value) = resp {
println!("{:#?}", value);
} else {
println!("{:#?}", resp.unwrap_err());
}
}
First install the library and its dependencies and then save the example to src/main.rs
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" cargo run
/**
* Create a log-based metric returns "OK" response
*/
import { client, v2 } from "@datadog/datadog-api-client";
const configuration = client.createConfiguration();
const apiInstance = new v2.LogsMetricsApi(configuration);
const params: v2.LogsMetricsApiCreateLogsMetricRequest = {
body: {
data: {
id: "ExampleLogsMetric",
type: "logs_metrics",
attributes: {
compute: {
aggregationType: "distribution",
includePercentiles: true,
path: "@duration",
},
},
},
},
};
apiInstance
.createLogsMetric(params)
.then((data: v2.LogsMetricResponse) => {
console.log(
"API called successfully. Returned data: " + JSON.stringify(data)
);
})
.catch((error: any) => console.error(error));
First install the library and its dependencies and then save the example to example.ts
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" tsc "example.ts"
GET https://api.ap1.datadoghq.com/api/v2/logs/config/metrics/{metric_id}https://api.datadoghq.eu/api/v2/logs/config/metrics/{metric_id}https://api.ddog-gov.com/api/v2/logs/config/metrics/{metric_id}https://api.datadoghq.com/api/v2/logs/config/metrics/{metric_id}https://api.us3.datadoghq.com/api/v2/logs/config/metrics/{metric_id}https://api.us5.datadoghq.com/api/v2/logs/config/metrics/{metric_id}
Get a specific log-based metric from your organization.
이름
유형
설명
metric_id [required]
string
The name of the log-based metric.
OK
The log-based metric object.
항목
유형
설명
data
object
The log-based metric properties.
attributes
object
The object describing a Datadog log-based metric.
compute
object
The compute rule to compute the log-based metric.
aggregation_type
enum
The type of aggregation to use.
Allowed enum values: count,distribution
include_percentiles
boolean
Toggle to include or exclude percentile aggregations for distribution metrics.
Only present when the aggregation_type
is distribution
.
path
string
The path to the value the log-based metric will aggregate on (only used if the aggregation type is a "distribution").
filter
object
The log-based metric filter. Logs matching this filter will be aggregated in this metric.
query
string
The search query - following the log search syntax.
group_by
[object]
The rules for the group by.
path
string
The path to the value the log-based metric will be aggregated over.
tag_name
string
Eventual name of the tag that gets created. By default, the path attribute is used as the tag name.
id
string
The name of the log-based metric.
type
enum
The type of the resource. The value should always be logs_metrics.
Allowed enum values: logs_metrics
default: logs_metrics
{
"data": {
"attributes": {
"compute": {
"aggregation_type": "distribution",
"include_percentiles": true,
"path": "@duration"
},
"filter": {
"query": "service:web* AND @http.status_code:[200 TO 299]"
},
"group_by": [
{
"path": "@http.status_code",
"tag_name": "status_code"
}
]
},
"id": "logs.page.load.count",
"type": "logs_metrics"
}
}
Not Authorized
API error response.
{
"errors": [
"Bad Request"
]
}
Not Found
API error response.
{
"errors": [
"Bad Request"
]
}
Too many requests
API error response.
{
"errors": [
"Bad Request"
]
}
# Path parameters
export metric_id="CHANGE_ME"
# Curl command
curl -X GET "https://api.ap1.datadoghq.com"https://api.datadoghq.eu"https://api.ddog-gov.com"https://api.datadoghq.com"https://api.us3.datadoghq.com"https://api.us5.datadoghq.com/api/v2/logs/config/metrics/${metric_id}" \
-H "Accept: application/json" \
-H "DD-API-KEY: ${DD_API_KEY}" \
-H "DD-APPLICATION-KEY: ${DD_APP_KEY}"
"""
Get a log-based metric returns "OK" response
"""
from os import environ
from datadog_api_client import ApiClient, Configuration
from datadog_api_client.v2.api.logs_metrics_api import LogsMetricsApi
# there is a valid "logs_metric" in the system
LOGS_METRIC_DATA_ID = environ["LOGS_METRIC_DATA_ID"]
configuration = Configuration()
with ApiClient(configuration) as api_client:
api_instance = LogsMetricsApi(api_client)
response = api_instance.get_logs_metric(
metric_id=LOGS_METRIC_DATA_ID,
)
print(response)
First install the library and its dependencies and then save the example to example.py
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" python3 "example.py"
# Get a log-based metric returns "OK" response
require "datadog_api_client"
api_instance = DatadogAPIClient::V2::LogsMetricsAPI.new
# there is a valid "logs_metric" in the system
LOGS_METRIC_DATA_ID = ENV["LOGS_METRIC_DATA_ID"]
p api_instance.get_logs_metric(LOGS_METRIC_DATA_ID)
First install the library and its dependencies and then save the example to example.rb
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" rb "example.rb"
// Get a log-based metric returns "OK" response
package main
import (
"context"
"encoding/json"
"fmt"
"os"
"github.com/DataDog/datadog-api-client-go/v2/api/datadog"
"github.com/DataDog/datadog-api-client-go/v2/api/datadogV2"
)
func main() {
// there is a valid "logs_metric" in the system
LogsMetricDataID := os.Getenv("LOGS_METRIC_DATA_ID")
ctx := datadog.NewDefaultContext(context.Background())
configuration := datadog.NewConfiguration()
apiClient := datadog.NewAPIClient(configuration)
api := datadogV2.NewLogsMetricsApi(apiClient)
resp, r, err := api.GetLogsMetric(ctx, LogsMetricDataID)
if err != nil {
fmt.Fprintf(os.Stderr, "Error when calling `LogsMetricsApi.GetLogsMetric`: %v\n", err)
fmt.Fprintf(os.Stderr, "Full HTTP response: %v\n", r)
}
responseContent, _ := json.MarshalIndent(resp, "", " ")
fmt.Fprintf(os.Stdout, "Response from `LogsMetricsApi.GetLogsMetric`:\n%s\n", responseContent)
}
First install the library and its dependencies and then save the example to main.go
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" go run "main.go"
// Get a log-based metric returns "OK" response
import com.datadog.api.client.ApiClient;
import com.datadog.api.client.ApiException;
import com.datadog.api.client.v2.api.LogsMetricsApi;
import com.datadog.api.client.v2.model.LogsMetricResponse;
public class Example {
public static void main(String[] args) {
ApiClient defaultClient = ApiClient.getDefaultApiClient();
LogsMetricsApi apiInstance = new LogsMetricsApi(defaultClient);
// there is a valid "logs_metric" in the system
String LOGS_METRIC_DATA_ID = System.getenv("LOGS_METRIC_DATA_ID");
try {
LogsMetricResponse result = apiInstance.getLogsMetric(LOGS_METRIC_DATA_ID);
System.out.println(result);
} catch (ApiException e) {
System.err.println("Exception when calling LogsMetricsApi#getLogsMetric");
System.err.println("Status code: " + e.getCode());
System.err.println("Reason: " + e.getResponseBody());
System.err.println("Response headers: " + e.getResponseHeaders());
e.printStackTrace();
}
}
}
First install the library and its dependencies and then save the example to Example.java
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" java "Example.java"
// Get a log-based metric returns "OK" response
use datadog_api_client::datadog;
use datadog_api_client::datadogV2::api_logs_metrics::LogsMetricsAPI;
#[tokio::main]
async fn main() {
// there is a valid "logs_metric" in the system
let logs_metric_data_id = std::env::var("LOGS_METRIC_DATA_ID").unwrap();
let configuration = datadog::Configuration::new();
let api = LogsMetricsAPI::with_config(configuration);
let resp = api.get_logs_metric(logs_metric_data_id.clone()).await;
if let Ok(value) = resp {
println!("{:#?}", value);
} else {
println!("{:#?}", resp.unwrap_err());
}
}
First install the library and its dependencies and then save the example to src/main.rs
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" cargo run
/**
* Get a log-based metric returns "OK" response
*/
import { client, v2 } from "@datadog/datadog-api-client";
const configuration = client.createConfiguration();
const apiInstance = new v2.LogsMetricsApi(configuration);
// there is a valid "logs_metric" in the system
const LOGS_METRIC_DATA_ID = process.env.LOGS_METRIC_DATA_ID as string;
const params: v2.LogsMetricsApiGetLogsMetricRequest = {
metricId: LOGS_METRIC_DATA_ID,
};
apiInstance
.getLogsMetric(params)
.then((data: v2.LogsMetricResponse) => {
console.log(
"API called successfully. Returned data: " + JSON.stringify(data)
);
})
.catch((error: any) => console.error(error));
First install the library and its dependencies and then save the example to example.ts
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" tsc "example.ts"
PATCH https://api.ap1.datadoghq.com/api/v2/logs/config/metrics/{metric_id}https://api.datadoghq.eu/api/v2/logs/config/metrics/{metric_id}https://api.ddog-gov.com/api/v2/logs/config/metrics/{metric_id}https://api.datadoghq.com/api/v2/logs/config/metrics/{metric_id}https://api.us3.datadoghq.com/api/v2/logs/config/metrics/{metric_id}https://api.us5.datadoghq.com/api/v2/logs/config/metrics/{metric_id}
Update a specific log-based metric from your organization.
Returns the log-based metric object from the request body when the request is successful.
This endpoint requires the logs_generate_metrics
permission.
이름
유형
설명
metric_id [required]
string
The name of the log-based metric.
New definition of the log-based metric.
항목
유형
설명
data [required]
object
The new log-based metric properties.
attributes [required]
object
The log-based metric properties that will be updated.
compute
object
The compute rule to compute the log-based metric.
include_percentiles
boolean
Toggle to include or exclude percentile aggregations for distribution metrics.
Only present when the aggregation_type
is distribution
.
filter
object
The log-based metric filter. Logs matching this filter will be aggregated in this metric.
query
string
The search query - following the log search syntax.
default: *
group_by
[object]
The rules for the group by.
path [required]
string
The path to the value the log-based metric will be aggregated over.
tag_name
string
Eventual name of the tag that gets created. By default, the path attribute is used as the tag name.
type [required]
enum
The type of the resource. The value should always be logs_metrics.
Allowed enum values: logs_metrics
default: logs_metrics
{
"data": {
"type": "logs_metrics",
"attributes": {
"filter": {
"query": "service:web* AND @http.status_code:[200 TO 299]-updated"
}
}
}
}
{
"data": {
"type": "logs_metrics",
"attributes": {
"compute": {
"include_percentiles": false
}
}
}
}
OK
The log-based metric object.
항목
유형
설명
data
object
The log-based metric properties.
attributes
object
The object describing a Datadog log-based metric.
compute
object
The compute rule to compute the log-based metric.
aggregation_type
enum
The type of aggregation to use.
Allowed enum values: count,distribution
include_percentiles
boolean
Toggle to include or exclude percentile aggregations for distribution metrics.
Only present when the aggregation_type
is distribution
.
path
string
The path to the value the log-based metric will aggregate on (only used if the aggregation type is a "distribution").
filter
object
The log-based metric filter. Logs matching this filter will be aggregated in this metric.
query
string
The search query - following the log search syntax.
group_by
[object]
The rules for the group by.
path
string
The path to the value the log-based metric will be aggregated over.
tag_name
string
Eventual name of the tag that gets created. By default, the path attribute is used as the tag name.
id
string
The name of the log-based metric.
type
enum
The type of the resource. The value should always be logs_metrics.
Allowed enum values: logs_metrics
default: logs_metrics
{
"data": {
"attributes": {
"compute": {
"aggregation_type": "distribution",
"include_percentiles": true,
"path": "@duration"
},
"filter": {
"query": "service:web* AND @http.status_code:[200 TO 299]"
},
"group_by": [
{
"path": "@http.status_code",
"tag_name": "status_code"
}
]
},
"id": "logs.page.load.count",
"type": "logs_metrics"
}
}
Bad Request
API error response.
{
"errors": [
"Bad Request"
]
}
Not Authorized
API error response.
{
"errors": [
"Bad Request"
]
}
Not Found
API error response.
{
"errors": [
"Bad Request"
]
}
Too many requests
API error response.
{
"errors": [
"Bad Request"
]
}
# Path parameters
export metric_id="CHANGE_ME"
# Curl command
curl -X PATCH "https://api.ap1.datadoghq.com"https://api.datadoghq.eu"https://api.ddog-gov.com"https://api.datadoghq.com"https://api.us3.datadoghq.com"https://api.us5.datadoghq.com/api/v2/logs/config/metrics/${metric_id}" \
-H "Accept: application/json" \
-H "Content-Type: application/json" \
-H "DD-API-KEY: ${DD_API_KEY}" \
-H "DD-APPLICATION-KEY: ${DD_APP_KEY}" \
-d @- << EOF
{
"data": {
"type": "logs_metrics",
"attributes": {
"filter": {
"query": "service:web* AND @http.status_code:[200 TO 299]-updated"
}
}
}
}
EOF
# Path parameters
export metric_id="CHANGE_ME"
# Curl command
curl -X PATCH "https://api.ap1.datadoghq.com"https://api.datadoghq.eu"https://api.ddog-gov.com"https://api.datadoghq.com"https://api.us3.datadoghq.com"https://api.us5.datadoghq.com/api/v2/logs/config/metrics/${metric_id}" \
-H "Accept: application/json" \
-H "Content-Type: application/json" \
-H "DD-API-KEY: ${DD_API_KEY}" \
-H "DD-APPLICATION-KEY: ${DD_APP_KEY}" \
-d @- << EOF
{
"data": {
"type": "logs_metrics",
"attributes": {
"compute": {
"include_percentiles": false
}
}
}
}
EOF
// Update a log-based metric returns "OK" response
package main
import (
"context"
"encoding/json"
"fmt"
"os"
"github.com/DataDog/datadog-api-client-go/v2/api/datadog"
"github.com/DataDog/datadog-api-client-go/v2/api/datadogV2"
)
func main() {
// there is a valid "logs_metric" in the system
LogsMetricDataID := os.Getenv("LOGS_METRIC_DATA_ID")
body := datadogV2.LogsMetricUpdateRequest{
Data: datadogV2.LogsMetricUpdateData{
Type: datadogV2.LOGSMETRICTYPE_LOGS_METRICS,
Attributes: datadogV2.LogsMetricUpdateAttributes{
Filter: &datadogV2.LogsMetricFilter{
Query: datadog.PtrString("service:web* AND @http.status_code:[200 TO 299]-updated"),
},
},
},
}
ctx := datadog.NewDefaultContext(context.Background())
configuration := datadog.NewConfiguration()
apiClient := datadog.NewAPIClient(configuration)
api := datadogV2.NewLogsMetricsApi(apiClient)
resp, r, err := api.UpdateLogsMetric(ctx, LogsMetricDataID, body)
if err != nil {
fmt.Fprintf(os.Stderr, "Error when calling `LogsMetricsApi.UpdateLogsMetric`: %v\n", err)
fmt.Fprintf(os.Stderr, "Full HTTP response: %v\n", r)
}
responseContent, _ := json.MarshalIndent(resp, "", " ")
fmt.Fprintf(os.Stdout, "Response from `LogsMetricsApi.UpdateLogsMetric`:\n%s\n", responseContent)
}
// Update a log-based metric with include_percentiles field returns "OK" response
package main
import (
"context"
"encoding/json"
"fmt"
"os"
"github.com/DataDog/datadog-api-client-go/v2/api/datadog"
"github.com/DataDog/datadog-api-client-go/v2/api/datadogV2"
)
func main() {
// there is a valid "logs_metric_percentile" in the system
LogsMetricPercentileDataID := os.Getenv("LOGS_METRIC_PERCENTILE_DATA_ID")
body := datadogV2.LogsMetricUpdateRequest{
Data: datadogV2.LogsMetricUpdateData{
Type: datadogV2.LOGSMETRICTYPE_LOGS_METRICS,
Attributes: datadogV2.LogsMetricUpdateAttributes{
Compute: &datadogV2.LogsMetricUpdateCompute{
IncludePercentiles: datadog.PtrBool(false),
},
},
},
}
ctx := datadog.NewDefaultContext(context.Background())
configuration := datadog.NewConfiguration()
apiClient := datadog.NewAPIClient(configuration)
api := datadogV2.NewLogsMetricsApi(apiClient)
resp, r, err := api.UpdateLogsMetric(ctx, LogsMetricPercentileDataID, body)
if err != nil {
fmt.Fprintf(os.Stderr, "Error when calling `LogsMetricsApi.UpdateLogsMetric`: %v\n", err)
fmt.Fprintf(os.Stderr, "Full HTTP response: %v\n", r)
}
responseContent, _ := json.MarshalIndent(resp, "", " ")
fmt.Fprintf(os.Stdout, "Response from `LogsMetricsApi.UpdateLogsMetric`:\n%s\n", responseContent)
}
First install the library and its dependencies and then save the example to main.go
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" go run "main.go"
// Update a log-based metric returns "OK" response
import com.datadog.api.client.ApiClient;
import com.datadog.api.client.ApiException;
import com.datadog.api.client.v2.api.LogsMetricsApi;
import com.datadog.api.client.v2.model.LogsMetricFilter;
import com.datadog.api.client.v2.model.LogsMetricResponse;
import com.datadog.api.client.v2.model.LogsMetricType;
import com.datadog.api.client.v2.model.LogsMetricUpdateAttributes;
import com.datadog.api.client.v2.model.LogsMetricUpdateData;
import com.datadog.api.client.v2.model.LogsMetricUpdateRequest;
public class Example {
public static void main(String[] args) {
ApiClient defaultClient = ApiClient.getDefaultApiClient();
LogsMetricsApi apiInstance = new LogsMetricsApi(defaultClient);
// there is a valid "logs_metric" in the system
String LOGS_METRIC_DATA_ATTRIBUTES_FILTER_QUERY =
System.getenv("LOGS_METRIC_DATA_ATTRIBUTES_FILTER_QUERY");
String LOGS_METRIC_DATA_ID = System.getenv("LOGS_METRIC_DATA_ID");
LogsMetricUpdateRequest body =
new LogsMetricUpdateRequest()
.data(
new LogsMetricUpdateData()
.type(LogsMetricType.LOGS_METRICS)
.attributes(
new LogsMetricUpdateAttributes()
.filter(
new LogsMetricFilter()
.query(
"service:web* AND @http.status_code:[200 TO"
+ " 299]-updated"))));
try {
LogsMetricResponse result = apiInstance.updateLogsMetric(LOGS_METRIC_DATA_ID, body);
System.out.println(result);
} catch (ApiException e) {
System.err.println("Exception when calling LogsMetricsApi#updateLogsMetric");
System.err.println("Status code: " + e.getCode());
System.err.println("Reason: " + e.getResponseBody());
System.err.println("Response headers: " + e.getResponseHeaders());
e.printStackTrace();
}
}
}
// Update a log-based metric with include_percentiles field returns "OK" response
import com.datadog.api.client.ApiClient;
import com.datadog.api.client.ApiException;
import com.datadog.api.client.v2.api.LogsMetricsApi;
import com.datadog.api.client.v2.model.LogsMetricResponse;
import com.datadog.api.client.v2.model.LogsMetricType;
import com.datadog.api.client.v2.model.LogsMetricUpdateAttributes;
import com.datadog.api.client.v2.model.LogsMetricUpdateCompute;
import com.datadog.api.client.v2.model.LogsMetricUpdateData;
import com.datadog.api.client.v2.model.LogsMetricUpdateRequest;
public class Example {
public static void main(String[] args) {
ApiClient defaultClient = ApiClient.getDefaultApiClient();
LogsMetricsApi apiInstance = new LogsMetricsApi(defaultClient);
// there is a valid "logs_metric_percentile" in the system
String LOGS_METRIC_PERCENTILE_DATA_ID = System.getenv("LOGS_METRIC_PERCENTILE_DATA_ID");
LogsMetricUpdateRequest body =
new LogsMetricUpdateRequest()
.data(
new LogsMetricUpdateData()
.type(LogsMetricType.LOGS_METRICS)
.attributes(
new LogsMetricUpdateAttributes()
.compute(new LogsMetricUpdateCompute().includePercentiles(false))));
try {
LogsMetricResponse result =
apiInstance.updateLogsMetric(LOGS_METRIC_PERCENTILE_DATA_ID, body);
System.out.println(result);
} catch (ApiException e) {
System.err.println("Exception when calling LogsMetricsApi#updateLogsMetric");
System.err.println("Status code: " + e.getCode());
System.err.println("Reason: " + e.getResponseBody());
System.err.println("Response headers: " + e.getResponseHeaders());
e.printStackTrace();
}
}
}
First install the library and its dependencies and then save the example to Example.java
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" java "Example.java"
"""
Update a log-based metric returns "OK" response
"""
from os import environ
from datadog_api_client import ApiClient, Configuration
from datadog_api_client.v2.api.logs_metrics_api import LogsMetricsApi
from datadog_api_client.v2.model.logs_metric_filter import LogsMetricFilter
from datadog_api_client.v2.model.logs_metric_type import LogsMetricType
from datadog_api_client.v2.model.logs_metric_update_attributes import LogsMetricUpdateAttributes
from datadog_api_client.v2.model.logs_metric_update_data import LogsMetricUpdateData
from datadog_api_client.v2.model.logs_metric_update_request import LogsMetricUpdateRequest
# there is a valid "logs_metric" in the system
LOGS_METRIC_DATA_ATTRIBUTES_FILTER_QUERY = environ["LOGS_METRIC_DATA_ATTRIBUTES_FILTER_QUERY"]
LOGS_METRIC_DATA_ID = environ["LOGS_METRIC_DATA_ID"]
body = LogsMetricUpdateRequest(
data=LogsMetricUpdateData(
type=LogsMetricType.LOGS_METRICS,
attributes=LogsMetricUpdateAttributes(
filter=LogsMetricFilter(
query="service:web* AND @http.status_code:[200 TO 299]-updated",
),
),
),
)
configuration = Configuration()
with ApiClient(configuration) as api_client:
api_instance = LogsMetricsApi(api_client)
response = api_instance.update_logs_metric(metric_id=LOGS_METRIC_DATA_ID, body=body)
print(response)
"""
Update a log-based metric with include_percentiles field returns "OK" response
"""
from os import environ
from datadog_api_client import ApiClient, Configuration
from datadog_api_client.v2.api.logs_metrics_api import LogsMetricsApi
from datadog_api_client.v2.model.logs_metric_type import LogsMetricType
from datadog_api_client.v2.model.logs_metric_update_attributes import LogsMetricUpdateAttributes
from datadog_api_client.v2.model.logs_metric_update_compute import LogsMetricUpdateCompute
from datadog_api_client.v2.model.logs_metric_update_data import LogsMetricUpdateData
from datadog_api_client.v2.model.logs_metric_update_request import LogsMetricUpdateRequest
# there is a valid "logs_metric_percentile" in the system
LOGS_METRIC_PERCENTILE_DATA_ID = environ["LOGS_METRIC_PERCENTILE_DATA_ID"]
body = LogsMetricUpdateRequest(
data=LogsMetricUpdateData(
type=LogsMetricType.LOGS_METRICS,
attributes=LogsMetricUpdateAttributes(
compute=LogsMetricUpdateCompute(
include_percentiles=False,
),
),
),
)
configuration = Configuration()
with ApiClient(configuration) as api_client:
api_instance = LogsMetricsApi(api_client)
response = api_instance.update_logs_metric(metric_id=LOGS_METRIC_PERCENTILE_DATA_ID, body=body)
print(response)
First install the library and its dependencies and then save the example to example.py
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" python3 "example.py"
# Update a log-based metric returns "OK" response
require "datadog_api_client"
api_instance = DatadogAPIClient::V2::LogsMetricsAPI.new
# there is a valid "logs_metric" in the system
LOGS_METRIC_DATA_ATTRIBUTES_FILTER_QUERY = ENV["LOGS_METRIC_DATA_ATTRIBUTES_FILTER_QUERY"]
LOGS_METRIC_DATA_ID = ENV["LOGS_METRIC_DATA_ID"]
body = DatadogAPIClient::V2::LogsMetricUpdateRequest.new({
data: DatadogAPIClient::V2::LogsMetricUpdateData.new({
type: DatadogAPIClient::V2::LogsMetricType::LOGS_METRICS,
attributes: DatadogAPIClient::V2::LogsMetricUpdateAttributes.new({
filter: DatadogAPIClient::V2::LogsMetricFilter.new({
query: "service:web* AND @http.status_code:[200 TO 299]-updated",
}),
}),
}),
})
p api_instance.update_logs_metric(LOGS_METRIC_DATA_ID, body)
# Update a log-based metric with include_percentiles field returns "OK" response
require "datadog_api_client"
api_instance = DatadogAPIClient::V2::LogsMetricsAPI.new
# there is a valid "logs_metric_percentile" in the system
LOGS_METRIC_PERCENTILE_DATA_ID = ENV["LOGS_METRIC_PERCENTILE_DATA_ID"]
body = DatadogAPIClient::V2::LogsMetricUpdateRequest.new({
data: DatadogAPIClient::V2::LogsMetricUpdateData.new({
type: DatadogAPIClient::V2::LogsMetricType::LOGS_METRICS,
attributes: DatadogAPIClient::V2::LogsMetricUpdateAttributes.new({
compute: DatadogAPIClient::V2::LogsMetricUpdateCompute.new({
include_percentiles: false,
}),
}),
}),
})
p api_instance.update_logs_metric(LOGS_METRIC_PERCENTILE_DATA_ID, body)
First install the library and its dependencies and then save the example to example.rb
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" rb "example.rb"
// Update a log-based metric returns "OK" response
use datadog_api_client::datadog;
use datadog_api_client::datadogV2::api_logs_metrics::LogsMetricsAPI;
use datadog_api_client::datadogV2::model::LogsMetricFilter;
use datadog_api_client::datadogV2::model::LogsMetricType;
use datadog_api_client::datadogV2::model::LogsMetricUpdateAttributes;
use datadog_api_client::datadogV2::model::LogsMetricUpdateData;
use datadog_api_client::datadogV2::model::LogsMetricUpdateRequest;
#[tokio::main]
async fn main() {
// there is a valid "logs_metric" in the system
let logs_metric_data_id = std::env::var("LOGS_METRIC_DATA_ID").unwrap();
let body = LogsMetricUpdateRequest::new(LogsMetricUpdateData::new(
LogsMetricUpdateAttributes::new().filter(
LogsMetricFilter::new()
.query("service:web* AND @http.status_code:[200 TO 299]-updated".to_string()),
),
LogsMetricType::LOGS_METRICS,
));
let configuration = datadog::Configuration::new();
let api = LogsMetricsAPI::with_config(configuration);
let resp = api
.update_logs_metric(logs_metric_data_id.clone(), body)
.await;
if let Ok(value) = resp {
println!("{:#?}", value);
} else {
println!("{:#?}", resp.unwrap_err());
}
}
// Update a log-based metric with include_percentiles field returns "OK" response
use datadog_api_client::datadog;
use datadog_api_client::datadogV2::api_logs_metrics::LogsMetricsAPI;
use datadog_api_client::datadogV2::model::LogsMetricType;
use datadog_api_client::datadogV2::model::LogsMetricUpdateAttributes;
use datadog_api_client::datadogV2::model::LogsMetricUpdateCompute;
use datadog_api_client::datadogV2::model::LogsMetricUpdateData;
use datadog_api_client::datadogV2::model::LogsMetricUpdateRequest;
#[tokio::main]
async fn main() {
// there is a valid "logs_metric_percentile" in the system
let logs_metric_percentile_data_id = std::env::var("LOGS_METRIC_PERCENTILE_DATA_ID").unwrap();
let body = LogsMetricUpdateRequest::new(LogsMetricUpdateData::new(
LogsMetricUpdateAttributes::new()
.compute(LogsMetricUpdateCompute::new().include_percentiles(false)),
LogsMetricType::LOGS_METRICS,
));
let configuration = datadog::Configuration::new();
let api = LogsMetricsAPI::with_config(configuration);
let resp = api
.update_logs_metric(logs_metric_percentile_data_id.clone(), body)
.await;
if let Ok(value) = resp {
println!("{:#?}", value);
} else {
println!("{:#?}", resp.unwrap_err());
}
}
First install the library and its dependencies and then save the example to src/main.rs
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" cargo run
/**
* Update a log-based metric returns "OK" response
*/
import { client, v2 } from "@datadog/datadog-api-client";
const configuration = client.createConfiguration();
const apiInstance = new v2.LogsMetricsApi(configuration);
// there is a valid "logs_metric" in the system
const LOGS_METRIC_DATA_ID = process.env.LOGS_METRIC_DATA_ID as string;
const params: v2.LogsMetricsApiUpdateLogsMetricRequest = {
body: {
data: {
type: "logs_metrics",
attributes: {
filter: {
query: "service:web* AND @http.status_code:[200 TO 299]-updated",
},
},
},
},
metricId: LOGS_METRIC_DATA_ID,
};
apiInstance
.updateLogsMetric(params)
.then((data: v2.LogsMetricResponse) => {
console.log(
"API called successfully. Returned data: " + JSON.stringify(data)
);
})
.catch((error: any) => console.error(error));
/**
* Update a log-based metric with include_percentiles field returns "OK" response
*/
import { client, v2 } from "@datadog/datadog-api-client";
const configuration = client.createConfiguration();
const apiInstance = new v2.LogsMetricsApi(configuration);
// there is a valid "logs_metric_percentile" in the system
const LOGS_METRIC_PERCENTILE_DATA_ID = process.env
.LOGS_METRIC_PERCENTILE_DATA_ID as string;
const params: v2.LogsMetricsApiUpdateLogsMetricRequest = {
body: {
data: {
type: "logs_metrics",
attributes: {
compute: {
includePercentiles: false,
},
},
},
},
metricId: LOGS_METRIC_PERCENTILE_DATA_ID,
};
apiInstance
.updateLogsMetric(params)
.then((data: v2.LogsMetricResponse) => {
console.log(
"API called successfully. Returned data: " + JSON.stringify(data)
);
})
.catch((error: any) => console.error(error));
First install the library and its dependencies and then save the example to example.ts
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" tsc "example.ts"
DELETE https://api.ap1.datadoghq.com/api/v2/logs/config/metrics/{metric_id}https://api.datadoghq.eu/api/v2/logs/config/metrics/{metric_id}https://api.ddog-gov.com/api/v2/logs/config/metrics/{metric_id}https://api.datadoghq.com/api/v2/logs/config/metrics/{metric_id}https://api.us3.datadoghq.com/api/v2/logs/config/metrics/{metric_id}https://api.us5.datadoghq.com/api/v2/logs/config/metrics/{metric_id}
Delete a specific log-based metric from your organization.
This endpoint requires the logs_generate_metrics
permission.
이름
유형
설명
metric_id [required]
string
The name of the log-based metric.
OK
Not Authorized
API error response.
{
"errors": [
"Bad Request"
]
}
Not Found
API error response.
{
"errors": [
"Bad Request"
]
}
Too many requests
API error response.
{
"errors": [
"Bad Request"
]
}
# Path parameters
export metric_id="CHANGE_ME"
# Curl command
curl -X DELETE "https://api.ap1.datadoghq.com"https://api.datadoghq.eu"https://api.ddog-gov.com"https://api.datadoghq.com"https://api.us3.datadoghq.com"https://api.us5.datadoghq.com/api/v2/logs/config/metrics/${metric_id}" \
-H "DD-API-KEY: ${DD_API_KEY}" \
-H "DD-APPLICATION-KEY: ${DD_APP_KEY}"
"""
Delete a log-based metric returns "OK" response
"""
from os import environ
from datadog_api_client import ApiClient, Configuration
from datadog_api_client.v2.api.logs_metrics_api import LogsMetricsApi
# there is a valid "logs_metric" in the system
LOGS_METRIC_DATA_ID = environ["LOGS_METRIC_DATA_ID"]
configuration = Configuration()
with ApiClient(configuration) as api_client:
api_instance = LogsMetricsApi(api_client)
api_instance.delete_logs_metric(
metric_id=LOGS_METRIC_DATA_ID,
)
First install the library and its dependencies and then save the example to example.py
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" python3 "example.py"
# Delete a log-based metric returns "OK" response
require "datadog_api_client"
api_instance = DatadogAPIClient::V2::LogsMetricsAPI.new
# there is a valid "logs_metric" in the system
LOGS_METRIC_DATA_ID = ENV["LOGS_METRIC_DATA_ID"]
api_instance.delete_logs_metric(LOGS_METRIC_DATA_ID)
First install the library and its dependencies and then save the example to example.rb
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" rb "example.rb"
// Delete a log-based metric returns "OK" response
package main
import (
"context"
"fmt"
"os"
"github.com/DataDog/datadog-api-client-go/v2/api/datadog"
"github.com/DataDog/datadog-api-client-go/v2/api/datadogV2"
)
func main() {
// there is a valid "logs_metric" in the system
LogsMetricDataID := os.Getenv("LOGS_METRIC_DATA_ID")
ctx := datadog.NewDefaultContext(context.Background())
configuration := datadog.NewConfiguration()
apiClient := datadog.NewAPIClient(configuration)
api := datadogV2.NewLogsMetricsApi(apiClient)
r, err := api.DeleteLogsMetric(ctx, LogsMetricDataID)
if err != nil {
fmt.Fprintf(os.Stderr, "Error when calling `LogsMetricsApi.DeleteLogsMetric`: %v\n", err)
fmt.Fprintf(os.Stderr, "Full HTTP response: %v\n", r)
}
}
First install the library and its dependencies and then save the example to main.go
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" go run "main.go"
// Delete a log-based metric returns "OK" response
import com.datadog.api.client.ApiClient;
import com.datadog.api.client.ApiException;
import com.datadog.api.client.v2.api.LogsMetricsApi;
public class Example {
public static void main(String[] args) {
ApiClient defaultClient = ApiClient.getDefaultApiClient();
LogsMetricsApi apiInstance = new LogsMetricsApi(defaultClient);
// there is a valid "logs_metric" in the system
String LOGS_METRIC_DATA_ID = System.getenv("LOGS_METRIC_DATA_ID");
try {
apiInstance.deleteLogsMetric(LOGS_METRIC_DATA_ID);
} catch (ApiException e) {
System.err.println("Exception when calling LogsMetricsApi#deleteLogsMetric");
System.err.println("Status code: " + e.getCode());
System.err.println("Reason: " + e.getResponseBody());
System.err.println("Response headers: " + e.getResponseHeaders());
e.printStackTrace();
}
}
}
First install the library and its dependencies and then save the example to Example.java
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" java "Example.java"
// Delete a log-based metric returns "OK" response
use datadog_api_client::datadog;
use datadog_api_client::datadogV2::api_logs_metrics::LogsMetricsAPI;
#[tokio::main]
async fn main() {
// there is a valid "logs_metric" in the system
let logs_metric_data_id = std::env::var("LOGS_METRIC_DATA_ID").unwrap();
let configuration = datadog::Configuration::new();
let api = LogsMetricsAPI::with_config(configuration);
let resp = api.delete_logs_metric(logs_metric_data_id.clone()).await;
if let Ok(value) = resp {
println!("{:#?}", value);
} else {
println!("{:#?}", resp.unwrap_err());
}
}
First install the library and its dependencies and then save the example to src/main.rs
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" cargo run
/**
* Delete a log-based metric returns "OK" response
*/
import { client, v2 } from "@datadog/datadog-api-client";
const configuration = client.createConfiguration();
const apiInstance = new v2.LogsMetricsApi(configuration);
// there is a valid "logs_metric" in the system
const LOGS_METRIC_DATA_ID = process.env.LOGS_METRIC_DATA_ID as string;
const params: v2.LogsMetricsApiDeleteLogsMetricRequest = {
metricId: LOGS_METRIC_DATA_ID,
};
apiInstance
.deleteLogsMetric(params)
.then((data: any) => {
console.log(
"API called successfully. Returned data: " + JSON.stringify(data)
);
})
.catch((error: any) => console.error(error));
First install the library and its dependencies and then save the example to example.ts
and run following commands:
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" tsc "example.ts"