このページは日本語には対応しておりません。随時翻訳に取り組んでいます。
翻訳に関してご質問やご意見ございましたら、お気軽にご連絡ください

Learn how to use Datadog’s integration with the Ragas framework to evaluate your LLM application. For more information about the Ragas integration, including a detailed setup guide, see Ragas Evaluations.

  1. Install required dependencies:

    pip install ragas==0.1.21 openai ddtrace>=3.0.0
    
  2. Create a file named quickstart.py with the following code:

    import os
    from ddtrace.llmobs import LLMObs
    from ddtrace.llmobs.utils import Prompt
    from openai import OpenAI
    
    LLMObs.enable(
        ml_app="test-rag-app",
        agentless_enabled=True,
    )
    
    oai_client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
    
    rag_context = "The First AFL–NFL World Championship Game was an American football game played on January 15, 1967, at the Los Angeles Memorial Coliseum in Los Angeles"
    
    with LLMObs.annotation_context(
        prompt=Prompt(variables={"context": rag_context}),
    ):
        completion = oai_client.chat.completions.create(
            model="gpt-3.5-turbo",
            messages=[
                {"role": "system", "content": "Answer the user's question given the following context information {}".format(rag_context)},
                {"role": "user", "content": "When was the first superbowl?"},
            ],
        )
    
  3. Run the script with the Ragas Faithfulness evaluation enabled:

    DD_LLMOBS_EVALUATORS=ragas_faithfulness DD_ENV=dev DD_API_KEY=<YOUR-DD-API-KEY> DD_SITE=datadoghq.com python quickstart.py
    
  4. View your results in Datadog at https://<YOUR-DATADOG-SITE-URL>/llm/traces?query=%40ml_app%3Atest-rag-app.

Further Reading

お役に立つドキュメント、リンクや記事: