Data Jobs Monitoring for Spark on Kubernetes

このページは日本語には対応しておりません。随時翻訳に取り組んでいます。翻訳に関してご質問やご意見ございましたら、お気軽にご連絡ください。

Data Jobs Monitoring gives visibility into the performance and reliability of Apache Spark applications on Kubernetes.

Setup

Follow these steps to enable Data Jobs Monitoring for Spark on Kubernetes.

  1. Install the Datadog Agent on your Kubernetes cluster.
  2. Inject Spark instrumentation.

Install the Datadog Agent on your Kubernetes cluster

If you have already installed the Datadog Agent on your Kubernetes cluster, ensure that you have enabled the Datadog Admission Controller. You can then go to the next step, Inject Spark instrumentation.

You can install the Datadog Agent using the Datadog Operator or Helm.

Prerequisites

Installation

  1. Install the Datadog Operator by running the following commands:

    helm repo add datadog https://helm.datadoghq.com
    helm install my-datadog-operator datadog/datadog-operator
    
  2. Create a Kubernetes Secret to store your Datadog API key.

    kubectl create secret generic datadog-secret --from-literal api-key=<DATADOG_API_KEY> --from-literal app-key=<DATADOG_APP_KEY>
    
  3. Create a file, datadog-agent.yaml, that contains the following configuration:

    kind: DatadogAgent
    apiVersion: datadoghq.com/v2alpha1
    metadata:
      name: datadog
    spec:
      features:
        apm:
          enabled: true
          hostPortConfig:
            enabled: true
            hostPort: 8126
        admissionController:
          enabled: true
          mutateUnlabelled: false
      global:
        tags:
          - 'data_workload_monitoring_trial:true'
        site: <DATADOG_SITE>
        credentials:
          apiSecret:
            secretName: datadog-secret
            keyName: api-key
          appSecret:
            secretName: datadog-secret
            keyName: app-key
      override:
        nodeAgent:
          env:
            - name: DD_DJM_CONFIG_ENABLED
              value: "true"
    

    Replace <DATADOG_SITE> with your Datadog site. Your site is . (Ensure the correct SITE is selected on the right).

  4. Deploy the Datadog Agent with the above configuration file:

    kubectl apply -f /path/to/your/datadog-agent.yaml
    
  1. Create a Kubernetes Secret to store your Datadog API key.

    kubectl create secret generic datadog-secret --from-literal api-key=<DATADOG_API_KEY> --from-literal app-key=<DATADOG_APP_KEY>
    
  2. Create a file, datadog-values.yaml, that contains the following configuration:

    datadog:
      apiKeyExistingSecret: datadog-secret
      appKeyExistingSecret: datadog-secret
      site: <DATADOG_SITE>
      apm:
        portEnabled: true
        port: 8126
      tags:
        - 'data_workload_monitoring_trial:true'
      env:
        - name: DD_DJM_CONFIG_ENABLED
          value: "true"
    
    clusterAgent:
      admissionController:
        enabled: true
        muteUnlabelled: false
    

    Replace <DATADOG_SITE> with your Datadog site. Your site is . (Ensure the correct SITE is selected on the right).

  3. Run the following command:

    helm install <RELEASE_NAME> \
     -f datadog-values.yaml \
     --set targetSystem=<TARGET_SYSTEM> \
     datadog/datadog
    
    • Replace <RELEASE_NAME> with your release name. For example, datadog-agent.

    • Replace <TARGET_SYSTEM> with the name of your OS. For example, linux or windows.

Inject Spark instrumentation

When you run your Spark job, use the following configurations:

spark.kubernetes.driver.label.admission.datadoghq.com/enabled (Required)
true
spark.kubernetes.driver.annotation.admission.datadoghq.com/java-lib.version (Required)
latest
spark.driver.extraJavaOptions
-Ddd.integration.spark.enabled (Required)
true
-Ddd.integrations.enabled (Required)
false
-Ddd.service (Optional)
Your service name. Because this option sets the job name in Datadog, it is recommended that you use a human-readable name.
-Ddd.env (Optional)
Your environment, such as prod or dev.
-Ddd.version (Optional)
Your version.
-Ddd.tags (Optional)
Other tags you wish to add, in the format <KEY_1>:<VALUE_1>,<KEY_2:VALUE_2>.
-Ddd.trace.experimental.long-running.enabled (Optional)
true To view jobs while they are still running

Example: spark-submit

spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master k8s://<CLUSTER_ENDPOINT> \
  --conf spark.kubernetes.container.image=895885662937.dkr.ecr.us-west-2.amazonaws.com/spark/emr-6.10.0:latest \
  --deploy-mode cluster \
  --conf spark.kubernetes.namespace=<NAMESPACE> \
  --conf spark.kubernetes.authenticate.driver.serviceAccountName=<SERVICE_ACCOUNT> \
  --conf spark.kubernetes.driver.label.admission.datadoghq.com/enabled=true \
  --conf spark.kubernetes.driver.annotation.admission.datadoghq.com/java-lib.version=latest \
  --conf spark.driver.extraJavaOptions="-Ddd.integration.spark.enabled=true -Ddd.integrations.enabled=false -Ddd.service=<JOB_NAME> -Ddd.env=<ENV> -Ddd.version=<VERSION> -Ddd.tags=<KEY_1>:<VALUE_1>,<KEY_2:VALUE_2> -Ddd.trace.experimental.long-running.enabled=true" \
  local:///usr/lib/spark/examples/jars/spark-examples.jar 20

Example: AWS start-job-run

aws emr-containers start-job-run \
--virtual-cluster-id <EMR_CLUSTER_ID> \
--name myjob \
--execution-role-arn <EXECUTION_ROLE_ARN> \
--release-label emr-6.10.0-latest \
--job-driver '{
  "sparkSubmitJobDriver": {
    "entryPoint": "s3://BUCKET/spark-examples.jar",
    "sparkSubmitParameters": "--class <MAIN_CLASS> --conf spark.kubernetes.driver.label.admission.datadoghq.com/enabled=true --conf spark.kubernetes.driver.annotation.admission.datadoghq.com/java-lib.version=latest --conf spark.driver.extraJavaOptions=\"-Ddd.integration.spark.enabled=true -Ddd.integrations.enabled=false -Ddd.service=<JOB_NAME> -Ddd.env=<ENV> -Ddd.version=<VERSION> -Ddd.tags=<KEY_1>:<VALUE_1>,<KEY_2:VALUE_2> -Ddd.trace.experimental.long-running.enabled=true\""
  }
}

Validation

In Datadog, view the Data Jobs Monitoring page to see a list of all your data processing jobs.

Advanced Configuration

Tag spans at runtime

You can set tags on Spark spans at runtime. These tags are applied only to spans that start after the tag is added.

// Add tag for all next Spark computations
sparkContext.setLocalProperty("spark.datadog.tags.key", "value")
spark.read.parquet(...)

To remove a runtime tag:

// Remove tag for all next Spark computations
sparkContext.setLocalProperty("spark.datadog.tags.key", null)

Further Reading

お役に立つドキュメント、リンクや記事: