Cette page n'est pas encore disponible en français, sa traduction est en cours.
Si vous avez des questions ou des retours sur notre projet de traduction actuel,
n'hésitez pas à nous contacter.
LLM Observability is not available in the selected site () at this time.
Learn how to use Datadog’s integration with the Ragas framework to evaluate your LLM application. For more information about the Ragas integration, including a detailed setup guide, see Ragas Evaluations.
Install required dependencies:
pip install ragas==0.1.21 openai ddtrace>=3.0.0
Create a file named quickstart.py
with the following code:
import os
from ddtrace.llmobs import LLMObs
from ddtrace.llmobs.utils import Prompt
from openai import OpenAI
LLMObs.enable(
ml_app="test-rag-app",
agentless_enabled=True,
)
oai_client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
rag_context = "The First AFL–NFL World Championship Game was an American football game played on January 15, 1967, at the Los Angeles Memorial Coliseum in Los Angeles"
with LLMObs.annotation_context(
prompt=Prompt(variables={"context": rag_context}),
):
completion = oai_client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "Answer the user's question given the following context information {}".format(rag_context)},
{"role": "user", "content": "When was the first superbowl?"},
],
)
Run the script with the Ragas Faithfulness evaluation enabled:
DD_LLMOBS_EVALUATORS=ragas_faithfulness DD_ENV=dev DD_API_KEY=<YOUR-DD-API-KEY> DD_SITE=datadoghq.com python quickstart.py
View your results in Datadog at https://<YOUR-DATADOG-SITE-URL>/llm/traces?query=%40ml_app%3Atest-rag-app
.
Further Reading
Documentation, liens et articles supplémentaires utiles: