Tracing a Proxy

You can set up tracing to include collecting trace information about proxies.

Datadog APM is included in Envoy v1.9.0 and newer.

Enabling Datadog APM

Note: The example configuration below is for Envoy v1.19.

The following settings are required to enable Datadog APM in Envoy:

  • a cluster for submitting traces to the Datadog Agent
  • http_connection_manager configuration to activate tracing
  1. Add a cluster for submitting traces to the Datadog Agent:

     clusters:
     ... existing cluster configs ...
     - name: datadog_agent
       connect_timeout: 1s
       type: strict_dns
       lb_policy: round_robin
       load_assignment:
         cluster_name: datadog_agent
         endpoints:
         - lb_endpoints:
           - endpoint:
               address:
                 socket_address:
                   address: localhost
                   port_value: 8126
    

    Change the address value if Envoy is running in a container or orchestrated environment.

  2. Include the following additional configuration in the http_connection_manager sections to enable tracing:

     - name: envoy.filters.network.http_connection_manager
       typed_config:
         "@type": type.googleapis.com/envoy.extensions.filters.network.http_connection_manager.v3.HttpConnectionManager
         generate_request_id: true
         request_id_extension:
           typed_config:
             "@type": type.googleapis.com/envoy.extensions.request_id.uuid.v3.UuidRequestIdConfig
             use_request_id_for_trace_sampling: false
         tracing:
           provider:
             name: envoy.tracers.datadog
             typed_config:
               "@type": type.googleapis.com/envoy.config.trace.v3.DatadogConfig
               collector_cluster: datadog_agent
               service_name: envoy-v1.19
    

    The collector_cluster value must match the name provided for the Datadog Agent cluster. The service_name can be changed to a meaningful value for your usage of Envoy.

With this configuration, HTTP requests to Envoy initiate and propagate Datadog traces, and appear in the APM UI.

Example Envoy v1.19 configuration

The following example configuration demonstrates the placement of items required to enable tracing using Datadog APM.

static_resources:
  listeners:
  - address:
      socket_address:
        address: 0.0.0.0
        port_value: 80
    traffic_direction: OUTBOUND
    filter_chains:
    - filters:
      - name: envoy.filters.network.http_connection_manager
        typed_config:
          "@type": type.googleapis.com/envoy.extensions.filters.network.http_connection_manager.v3.HttpConnectionManager
          generate_request_id: true
          request_id_extension:
            typed_config:
              "@type": type.googleapis.com/envoy.extensions.request_id.uuid.v3.UuidRequestIdConfig
              use_request_id_for_trace_sampling: false
          tracing:
          # Use the datadog tracer
            provider:
              name: envoy.tracers.datadog
              typed_config:
                "@type": type.googleapis.com/envoy.config.trace.v3.DatadogConfig
                collector_cluster: datadog_agent   # matched against the named cluster
                service_name: envoy-v1.19          # user-defined service name
          codec_type: auto
          stat_prefix: ingress_http
          route_config:
            name: local_route
            virtual_hosts:
            - name: backend
              domains:
              - "*"
              routes:
              - match:
                  prefix: "/"
                route:
                  cluster: service1
          # Traces for healthcheck requests should not be sampled.
          http_filters:
          - name: envoy.filters.http.health_check
            typed_config:
              "@type": type.googleapis.com/envoy.extensions.filters.http.health_check.v3.HealthCheck
              pass_through_mode: false
              headers:
                - exact_match: /healthcheck
                  name: :path
          - name: envoy.filters.http.router
            typed_config: {}
          use_remote_address: true
  clusters:
  - name: service1
    connect_timeout: 0.250s
    type: strict_dns
    lb_policy: round_robin
    load_assignment:
      cluster_name: service1
      endpoints:
      - lb_endpoints:
        - endpoint:
            address:
              socket_address:
                address: service1
                port_value: 80
  # Configure this cluster with the address of the datadog Agent
  # for sending traces.
  - name: datadog_agent
    connect_timeout: 1s
    type: strict_dns
    lb_policy: round_robin
    load_assignment:
      cluster_name: datadog_agent
      endpoints:
      - lb_endpoints:
        - endpoint:
            address:
              socket_address:
                address: localhost
                port_value: 8126

admin:
  access_log_path: "/dev/null"
  address:
    socket_address:
      address: 0.0.0.0
      port_value: 8001

Excluding metrics

If you are using Envoy’s dog_statsd configuration to report metrics, you can exclude activity from the datadog_agent cluster with this additional configuration.

stats_config:
  stats_matcher:
    exclusion_list:
      patterns:
      - prefix: "cluster.datadog_agent."

Envoy Sampling

To control the volume of Envoy traces that are sent to Datadog, specify a sampling rate by setting the parameter DD_TRACE_SAMPLING_RULES to a value between 0.0 (0%) and 1.0 (100%). If no value is specified, 100% of traces starting from Envoy are sent.

To use the Datadog Agent calculated sampling rates (10 traces per second per Agent) and ignore the default sampling rule set to 100%, set the parameter DD_TRACE_SAMPLING_RULES to an empty array:

DD_TRACE_SAMPLING_RULES=[]

You can also define an explicit sampling rate between 0.0 (0%) and 1.0 (100%) by service. For example, to set the sample rate to 10% for service envoy-proxy:

DD_TRACE_SAMPLING_RULES=[{"service": "envoy-proxy","sample_rate": 0.1}]

To configure your sampling rate with DD_TRACE_SAMPLING_RULES, use one of the following methods , depending on how you run Envoy:

  • By shell script: Set the environment variable immediately before executing envoy in the script:

    #!/bin/sh
    export DD_TRACE_SAMPLING_RULES=[]
    envoy -c envoy-config.yaml
    
  • In a Docker Compose setup: Set the environment variable in the environment section of the service definition:

    services:
      envoy:
        image: envoyproxy/envoy:v1.19-latest
        entrypoint: []
        command:
            - envoy
            - -c
            - /etc/envoy/envoy.yaml
        volumes:
            - './envoy.yaml:/etc/envoy/envoy.yaml:ro'
        environment:
            - DD_TRACE_SAMPLING_RULES=[]
    
  • As a container inside a Kubernetes pod: specify the environment variable in the env section of the corresponding containers entry of the pod’s spec:

    apiVersion: v1
    kind: Pod
    metadata:
      name: envoy
    spec:
      containers:
      - name: envoy
        image: envoyproxy/envoy:v1.20-latest
        env:
        - name: DD_TRACE_SAMPLING_RULES
          value: "[]"
    

Environment variables

Note: The variables DD_AGENT_HOST, DD_TRACE_AGENT_PORT and DD_TRACE_AGENT_URL do not apply to Envoy, as the address of the Datadog Agent is configured using the cluster settings.

The available environment variables depend on the version of the C++ tracer embedded in Envoy. The version of the C++ tracer can be found in the logs, indicated by the line starting with “DATADOG TRACER CONFIGURATION”.

Datadog APM supports NGINX in two configurations:

  • NGINX operated as a proxy with tracing provided by the Datadog module.
  • NGINX as an Ingress Controller for Kubernetes.

NGINX with Datadog module

Datadog provides an NGINX module for distributed tracing.

Module installation

To install the Datadog NGINX module, follow these instructions:

  1. Download the appropriate version from the latest nginx-datadog GitHub release
  2. Choose the tarball corresponding to the specific NGINX version and CPU architecture.

Each release includes two tarballs per combination of NGINX version and CPU architecture. The main tarball contains a single file, ngx_http_datadog_module.so, which is the Datadog NGINX module. The second one is debug symbols, it is optional.

For simplicity, the following script downloads only the module for the latest release:

get_latest_release() {
  curl --silent "https://api.github.com/repos/$1/releases/latest" | jq --raw-output .tag_name
}

get_architecture() {
  case "$(uname -m)" in
    aarch64|arm64)
      echo "arm64"
      ;;
    x86_64|amd64)
      echo "amd64"
      ;;
    *)
      echo ""
      ;;
  esac
}

ARCH=$(get_architecture)

if [ -z "$ARCH" ]; then
    echo 1>&2 "ERROR: Architecture $(uname -m) is not supported."
    exit 1
fi

NGINX_VERSION="1.26.0"
RELEASE_TAG=$(get_latest_release DataDog/nginx-datadog)
TARBALL="ngx_http_datadog_module-${ARCH}-${NGINX_VERSION}.so.tgz"

curl -Lo ${TARBALL} "https://github.com/DataDog/nginx-datadog/releases/download/${RELEASE_TAG}/${TARBALL}"

Extract the ngx_http_datadog_module.so file from the downloaded tarball using tar and place it in the NGINX modules directory, typically located at /usr/lib/nginx/modules.

NGINX configuration with Datadog module

In the topmost section of the NGINX configuration, load the Datadog module.

load_module modules/ngx_http_datadog_module.so;

The default configuration connects to a local Datadog Agent and produces traces for all NGINX locations. Specify custom configuration using the dedicated datadog_* directives described in the Datadog module’s API documentation.

For example, the following NGINX configuration sets the service name to usage-internal-nginx and the sampling rate to 10%.

load_module modules/ngx_http_datadog_module.so;

http {
  datadog_service_name usage-internal-nginx;
  datadog_sample_rate 0.1;

  # servers, locations...
}

Ingress-NGINX Controller for Kubernetes

Datadog offers support for monitoring the Ingress-NGINX controller in Kubernetes. Choose from the following instrumentation methods based on your controller version and requirements:

Controller v1.10.0+ using Datadog’s features

This instrumentation method uses nginx-datadog and leverages Kubernetes init-container mechanism to install the module within the Ingress-NGINX Controller instance.

To instrument Ingress-NGINX v1.10.0+ using Datadog’s module, follow these steps:

  1. Verify your Ingress-NGINX version
    Check your Ingress-NGINX Controller version and ensure you have the matching Datadog init-container available. The init-container version (datadog/ingress-nginx-injection) must exactly match your controller version to prevent startup issues. For example, if you’re running Ingress-NGINX v1.11.3, you need datadog/ingress-nginx-injection:v1.11.3.

  2. Modify your controller’s pod specification:
    Update the controller pod specification to include the init-container and configure the Datadog Agent host environment variable:

    spec:
      template:
        spec:
          initContainers:
            - name: init-datadog
              image: datadog/ingress-nginx-injection:<MY_INGRESS_NGINX_VERSION>
              command: ['/datadog/init_module.sh', '/opt/datadog-modules']
              volumeMounts:
                - name: nginx-module
                  mountPath: /opt/datadog-modules
          containers:
            - name: controller
              image: registry.k8s.io/ingress-nginx/controller:<MY_INGRESS_NGINX_VERSION>
              env:
                - ...
                - name: DD_AGENT_HOST
                  valueFrom:
                    fieldRef:
                      fieldPath: status.hostIP
    

    Note: For an alternative way to access the Datadog Agent, see the Kubernetes installation guide.

  3. Configure Ingress-NGINX
    Create or modify the ConfigMap to load the Datadog module:

    kind: ConfigMap
    apiVersion: v1
    ...
    data:
      enable-opentelemetry: "false"
      error-log-level: notice
      main-snippet: |
        load_module /opt/datadog-modules/ngx_http_datadog_module.so;    
    
  4. Apply the ConfigMap
    Apply the updated ConfigMap to ensure the Datadog module is correctly loaded.

This configuration ensures that the Datadog module is loaded and ready to trace incoming requests.

Controller v1.10.0+ using OpenTelemetry

1. Prepare the Datadog Agent
Ensure that your Datadog Agent has gRPC OTLP Ingestion enabled to act as an OpenTelemetry Collector.

2. Configure the Ingress controller
To begin, verify that your Ingress controller’s pod spec has the HOST_IP environment variable set. If not, add the following entry to the env block within the pod’s specification:

- name: HOST_IP
  valueFrom:
    fieldRef:
      fieldPath: status.hostIP
- name: OTEL_EXPORTER_OTLP_ENDPOINT
  value: "http://$(HOST_IP):4317"

Next, enable OpenTelemetry instrumentation for the controller. Create or edit a ConfigMap with the following details:

apiVersion: v1
kind: ConfigMap
metadata:
  name: ingress-nginx-controller
  namespace: ingress-nginx
data:
  enable-opentelemetry: "true"
  otel-sampler: AlwaysOn
  # Defaults
  # otel-service-name: "nginx"
  # otel-sampler-ratio: 0.01

Controller v1.9.0 and older

To enable Datadog tracing, create or edit a ConfigMap to set enable-opentracing: "true" and the datadog-collector-host to which traces should be sent. The name of the ConfigMap is cited explicitly by the Ingress-NGINX Controller container’s command line argument, defaulting to --configmap=<POD_NAMESPACE>/nginx-configuration. If ingress-nginx was installed via Helm chart, the ConfigMap’s name will follow the pattern <RELEASE_NAME>-nginx-ingress-controller.

The Ingress controller manages both the nginx.conf and /etc/nginx/opentracing.json files. Tracing is enabled for all location blocks.

kind: ConfigMap
apiVersion: v1
metadata:
  name: nginx-configuration
  namespace: ingress-nginx
  labels:
    app.kubernetes.io/name: ingress-nginx
    app.kubernetes.io/part-of: ingress-nginx
data:
  enable-opentracing: "true"
  datadog-collector-host: $HOST_IP
  # Defaults
  # datadog-service-name: "nginx"
  # datadog-collector-port: "8126"
  # datadog-operation-name-override: "nginx.handle"
  # datadog-sample-rate: "1.0"

Additionally, ensure that your controller’s pod spec has the HOST_IP environment variable set. Add this entry to the env: block that contains the environment variables POD_NAME and POD_NAMESPACE.

- name: HOST_IP
  valueFrom:
    fieldRef:
      fieldPath: status.hostIP

To set a different service name per Ingress using annotations:

  nginx.ingress.kubernetes.io/configuration-snippet: |
      opentracing_tag "service.name" "custom-service-name";      

The above overrides the default nginx-ingress-controller.ingress-nginx service name.

Datadog monitors every aspect of your Istio environment, so you can:

  • View individual distributed traces for applications transacting over the mesh with APM (see below).
  • Assess the health of Envoy and the Istio control plane with logs.
  • Break down the performance of your service mesh with request, bandwidth, and resource consumption metrics.
  • Map network communication between containers, pods, and services over the mesh with Cloud Network Monitoring.

To learn more about monitoring your Istio environment with Datadog, see the Istio blog.

Datadog APM is available for supported Istio releases.

Datadog Agent installation

  1. Install the Agent
  2. Make sure APM is enabled for your Agent.
  3. Uncomment the hostPort setting so that Istio sidecars can connect to the Agent and submit traces.

Istio configuration and installation

To enable Datadog APM, a custom Istio installation is required to set two extra options when installing Istio.

  • --set values.global.proxy.tracer=datadog
  • --set values.pilot.traceSampling=100.0
istioctl manifest apply --set values.global.proxy.tracer=datadog --set values.pilot.traceSampling=100.0

Traces are generated when the namespace for the pod has sidecar injection enabled. This is done by adding the istio-injection=enabled label.

kubectl label namespace example-ns istio-injection=enabled

Traces are generated when Istio is able to determine the traffic is using an HTTP-based protocol. By default, Istio tries to automatically detect this. It can be manually configured by naming the ports in your application’s deployment and service. More information can be found in Istio’s documentation for Protocol Selection

By default, the service name used when creating traces is generated from the deployment name and namespace. This can be set manually by adding an app label to the deployment’s pod template:

template:
  metadata:
    labels:
      app: <SERVICE_NAME>

For CronJobs, the app label should be added to the job template, as the generated name comes from the Job instead of the higher-level CronJob.

Istio Sampling

To control the volume of Istio traces that are sent to Datadog, configure a sampling rule whose "sample_rate" is a value between 0.0 (0%) and 1.0 (100%). Configure sampling rules with the DD_TRACE_SAMPLING_RULES environment variable. If DD_TRACE_SAMPLING_RULES is not specified, then 100% of Istio traces are sent to Datadog.

Note: These environment variables apply only to the subset of traces indicated by the values.pilot.traceSampling setting, hence the required --set values.pilot.traceSampling=100.0 during Istio configuration.

Explicitly specifying an empty array of rules is different from not specifying rules.

To configure DD_TRACE_SAMPLING_RULES, in each deployment whose namespace is labeled istio-injection=enabled, set the environment variable as part of the apm.datadoghq.com/env annotation of the deployment spec template:

apiVersion: apps/v1
...
kind: Deployment
...
spec:
  template:
    metadata:
      annotations:
        apm.datadoghq.com/env: '{"DD_ENV": "prod", "DD_SERVICE": "my-service", "DD_VERSION": "v1.1", "DD_TRACE_SAMPLING_RULES": "[]"}'

apm.datadoghq.com/env is a string whose content is a JSON object mapping environment variable names to values. The environment variable values are themselves strings, and in the case of DD_TRACE_SAMPLING_RULES, the string value is a JSON array of objects.

Environment variables

Environment variables for Istio sidecars can be set on a per-deployment basis using the apm.datadoghq.com/env annotation. This is unique for deployments employing Istio sidecars and is set in addition to the labels for unified service tagging.

apiVersion: apps/v1
...
kind: Deployment
...
spec:
  template:
    metadata:
      annotations:
        apm.datadoghq.com/env: '{ "DD_ENV": "prod", "DD_SERVICE": "my-service", "DD_VERSION": "v1.1"}'

Deployment and service

If the Agents on your cluster are running as a deployment and service instead of the default DaemonSet, then an additional option is required to specify the DNS address and port of the Agent. For a service named datadog-agent in the default namespace, that address would be datadog-agent.default.svc.cluster.local:8126.

  • --set values.global.tracer.datadog.address=datadog-agent.default:8126

If Mutual TLS is enabled for the cluster, then the Agent’s deployment should disable sidecar injection, and you should add a traffic policy that disables TLS.

This annotation is added to the Agent’s Deployment template.

  template:
    metadata:
      annotations:
        sidecar.istio.io/inject: "false"

For Istio v1.4.x, the traffic policy can be configured using a DestinationRule. Istio v1.5.x and higher do not need an additional traffic policy.

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: datadog-agent
  namespace: istio-system
spec:
  host: datadog-agent.default.svc.cluster.local
  trafficPolicy:
    tls:
      mode: DISABLE

Automatic Protocol Selection may determine that traffic between the sidecar and Agent is HTTP, and enable tracing. This can be disabled using manual protocol selection for this specific service. The port name in the datadog-agent Service can be changed to tcp-traceport. If using Kubernetes 1.18+, appProtocol: tcp can be added to the port specification.

Datadog APM is available for Kong Gateway using the kong-plugin-ddtrace plugin.

Installation

The plugin is installed using luarocks.

luarocks install kong-plugin-ddtrace

Kong Gateway is not a bundled plugin, so it needs to be configured before it can be enabled. To enable it, include bundled and ddtrace in the KONG_PLUGINS environment variable, or set plugins=bundled,ddtrace in /etc/kong/kong.conf. Next, restart Kong Gateway to apply the change.

# Set the KONG_PLUGINS environment variable or edit /etc/kong/kong.conf to enable the ddtrace plugin
export KONG_PLUGINS=bundled,ddtrace
kong restart

Configuration

The plugin can be enabled globally or on specific services in Kong Gateway.

# Enabled globally
curl -i -X POST --url http://localhost:8001/plugins/ --data 'name=ddtrace'
# Enabled for specific service only
curl -i -X POST --url http://localhost:8001/services/example-service/plugins/ --data 'name=ddtrace'

Options are available for setting the service name, environment, and other features within the plugin. The example below sets the service name to mycorp-internal-api in the prod environment.

curl -i -X POST --url http://localhost:8001/plugins/ --data 'name=ddtrace' --data 'config.service_name=mycorp-internal-api' --data 'config.environment=prod'

More configuration options can be found on the kong-plugin-ddtrace plugin documentation.

Datadog provides an HTTPd module to enhance Apache HTTP Server and IHS HTTP Server capabilities with APM Tracing.

Compatibility

Since IHS HTTP Server is essentially a wrapper of the Apache HTTP Server, the module can also be used with IHS without any modifications.

Installation

Note: Only Apache HTTP Server 2.4.x for x86_64 architecture is supported.

The module is provided as a shared library for dynamic loading by HTTPd. Each supported platform and architecture has its own artifact hosted on httpd-datadog’s repository.

To install the module:

  1. Run the following script to download the latest version of the module:

    curl -s https://api.github.com/repos/DataDog/httpd-datadog/releases/latest \
    | grep "mod_datadog-linux-x86_64.tar.gz" \
    | cut -d : -f 2,3 \
    | tr -d \" \
    | wget -qi -
    

    When unpacking the tarball, the resulting file is mod_datadog.so, the shared library that must be loaded by the server.

  2. Place the file in the directory where HTTPd searches for modules, typically /usr/local/apache2/modules.

  3. Load the module by adding the following line in the configuration file:

    LoadModule datadog_module modules/mod_datadog.so
    
  4. To enable the module, make sure to restart or reload HTTPd.

Configuration

By default, all requests are traced and sent to the Datadog Agent.

To change the module default behavior, use Datadog* directives described in the Datadog module’s API documentation.

For example, the following configuration sets the service name to my-service and the sampling rate to 10%:

LoadModule datadog_module modules/mod_datadog.so

DatadogServiceName my-app
DatadogSamplingRate 0.1

Further Reading