Legacy Google Cloud Run Functions Gen 1

Overview

This page explains how to collect traces, trace metrics, runtime metrics, and custom metrics from your Cloud Run Functions Gen 1 (formerly known as Cloud Functions) utilizing serverless compatibility layer.

This page is only for legacy 1st Gen Cloud Run Functions. For Gen 2 support, see 2nd Gen Functions, and to collect additional metrics, install the Google Cloud integration.

Google has integrated Cloud Run functions into Cloud Run UI. Starting August 2025, creating legacy 1st Gen functions will only be possible using the Google Cloud CLI, API, or Terraform. Datadog recommends upgrading your cloud run function to Gen 2 for more features and Datadog support. Reach out to Google for more information on the migration to Cloud Run.

Setup

  1. Install dependencies. Run the following commands:

    npm install @datadog/serverless-compat
    npm install dd-trace
    

    Datadog recommends pinning the package versions and regularly upgrading to the latest versions of both @datadog/serverless-compat and dd-trace to ensure you have access to enhancements and bug fixes.

    For more information, see Tracing Node.js Applications.

  2. Start the Datadog serverless compatibility layer and initialize the Node.js tracer. Add the following lines to your main application entry point file (for example, app.js):

    require('@datadog/serverless-compat').start();
    
    // This line must come before importing any instrumented module. 
    const tracer = require('dd-trace').init()
    
  3. (Optional) Enable runtime metrics. See Node.js Runtime Metrics.

  4. (Optional) Enable custom metrics. See Metric Submission: DogStatsD.

  1. Install dependencies. Run the following commands:

    pip install datadog-serverless-compat
    pip install ddtrace
    

    Datadog recommends using the latest versions of both datadog-serverless-compat and ddtrace to ensure you have access to enhancements and bug fixes.

    For more information, see Tracing Python Applications.

  2. Initialize the Datadog Python tracer and serverless compatibility layer. Add the following lines to your main application entry point file:

    from datadog_serverless_compat import start
    from ddtrace import tracer, patch_all
    
    start()
    patch_all()
    
  3. (Optional) Enable runtime metrics. See Python Runtime Metrics.

  4. (Optional) Enable custom metrics. See Metric Submission: DogStatsD.

  1. Install dependencies. Download the Datadog Java tracer and serverless compatibility layer:

    Download dd-java-agent.jar and dd-serverless-compat-java-agent.jar that contains the latest tracer class files, to a folder that is accessible by your Datadog user:

    wget -O /path/to/dd-java-agent.jar 'https://dtdg.co/latest-java-tracer'
    wget -O /path/to/dd-serverless-compat-java-agent.jar 'https://dtdg.co/latest-serverless-compat-java-agent'
    

    For alternative ways to download the agent, see the Datadog Java Agent documentation.

    Datadog recommends using the latest versions of both datadog-serverless-compat and dd-java-agent to ensure you have access to enhancements and bug fixes.

  2. Initialize the Datadog Java tracer and serverless compatibility layer. Add JAVA_TOOL_OPTIONS to your runtime environment variable:

    Implement and Auto instrument the Java tracer by setting the Runtime environment variable to instrument your Java cloud function with the Datadog Java tracer and the serverless compatibility layer.

    NameValue
    JAVA_TOOL_OPTIONS-javaagent:/path/to/dd-serverless-compat-java-agent.jar -javaagent:/path/to/dd-java-agent.jar
  3. (Optional) Enable runtime metrics. See Java Runtime Metrics.

  4. (Optional) Enable custom metrics. See Metric Submission: DogStatsD.

  1. Deploy your function. Use gcloud or Google Console to deploy your 1st Gen Cloud Run Function:

    Follow Google Cloud’s Deploy a Cloud Run function (1st gen) instructions to utilize gcloud function deploy <FUNCTION_NAME> --no-gen2 to deploy a 1st Gen Cloud Run Function.

    Use the --source flag to point to the directory of your function code with dd-java-agent.jar and dd-serverless-compat-java-agent.jar at the top level.

    For more information, see Google Cloud’s gcloud functions deploy documentation for more flags for the gcloud command.

  2. Configure Datadog intake. Add the following environment variables to your function’s application settings:

    NameValue
    DD_API_KEYYour Datadog API key.
    DD_SITEYour Datadog site. For example, .
  3. Configure Unified Service Tagging. You can collect metrics from your Cloud Run Function by installing the Google Cloud integration. To correlate these metrics with your traces, first set the env, service, and version tags on your resource in Google Cloud. Then, configure the following environment variables. You can add custom tags as DD_TAGS.

    NameValue
    DD_ENVHow you want to tag your env for Unified Service Tagging. For example, prod.
    DD_SERVICEHow you want to tag your service for Unified Service Tagging.
    DD_VERSIONHow you want to tag your version for Unified Service Tagging.
    DD_TAGSYour comma-separated custom tags. For example, key1:value1,key2:value2.
  4. Add Service Label in the info panel. Tag your GCP entity with the service label to correlate your traces with your service:

    Add the same value from DD_SERVICE to a service label on your cloud function, inside the info panel of your function.

    NameValue
    serviceThe name of your service matching the DD_SERVICE env var.

    For more information on how to add labels, see Google Cloud’s Configure labels for services documentation.

Example Functions

The following example contains a sample function with tracing and metrics set up.

// Example of a simple Cloud Run Function with traces and custom metrics
// dd-trace must come before any other import. 
const tracer = require('dd-trace').init();

const functions = require('@google-cloud/functions-framework');

function handler(req, res) {
   tracer.dogstatsd.increment('dd.function.sent', 1, {'runtime':'nodejs'});
   return res.send('Welcome to Datadog💜!');
}

functions.http('httpexample',  handlerWithTrace)
const handlerWithTrace = tracer.wrap('example-span', handler)

module.exports = handlerWithTrace
# Example of a simple Cloud Run Function with traces and custom metrics
import functions_framework
import ddtrace
from datadog import initialize, statsd

ddtrace.patch(logging=True)
initialize(**{'statsd_port': 8125})

@ddtrace.tracer.wrap()
@functions_framework.http
def dd_log_forwader(request):
   with ddtrace.tracer.trace('sending_trace') as span:
      span.set_tag('test', 'ninja')
      statsd.increment('dd.function.sent', tags=["runtime:python"])
   return "Welcome To Datadog! 💜"
// Example of a simple Cloud Run Function with traces and custom metrics
package com.example;

import com.google.cloud.functions.HttpFunction;
import com.google.cloud.functions.HttpRequest;
import com.google.cloud.functions.HttpResponse;
import java.io.BufferedWriter;
import com.timgroup.statsd.NonBlockingStatsDClientBuilder;
import com.timgroup.statsd.StatsDClient;

public class Example implements HttpFunction {
  @Override
  public void service(HttpRequest request, HttpResponse response) throws Exception {
    StatsDClient Statsd = new NonBlockingStatsDClientBuilder()
            .hostname("localhost")
            .port(8125)
            .build();
    BufferedWriter writer = response.getWriter();
    Statsd.incrementCounter("dd.function.sent", new String[]{"runtime:java"});
    writer.write("Welcome to Datadog!");
  }
}

You can also install the tracer using the following Maven dependency:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>cloudfunctions</groupId>
    <artifactId>http-function</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.release>17</maven.compiler.release>
    </properties>

    <dependencies>
        <dependency>
            <groupId>com.google.cloud.functions</groupId>
            <artifactId>functions-framework-api</artifactId>
            <version>1.0.1</version>
        </dependency>
        <dependency>
            <groupId>com.datadoghq</groupId>
            <artifactId>java-dogstatsd-client</artifactId>
            <version>4.4.3</version>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.8.1</version>
                <configuration>
                    <excludes>
                        <exclude>.google/</exclude>
                    </excludes>
                </configuration>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-antrun-plugin</artifactId>
                <version>1.8</version>
                <executions>
                    <execution>
                        <phase>initialize</phase>
                        <configuration>
                            <tasks>
                                <get src="https://dtdg.co/latest-serverless-compat-java-agent" dest="dd-serverless-compat-java-agent.jar" />
                                <get src="https://dtdg.co/latest-java-tracer" dest="dd-java-agent.jar" />
                            </tasks>
                        </configuration>
                        <goals>
                            <goal>run</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
            
        </plugins>
    </build>
</project>

What’s next?

Enable/disable trace metrics

Trace metrics are enabled by default. To configure trace metrics, use the following environment variable:

DD_TRACE_STATS_COMPUTATION_ENABLED
Enables (true) or disables (false) trace metrics. Defaults to true.

Values: true, false

Troubleshooting

Enable debug logs

You can collect debug logs for troubleshooting. To configure debug logs, use the following environment variables:

DD_TRACE_DEBUG
Enables (true) or disables (false) debug logging for the Datadog Tracing Library. Defaults to false.

Values: true, false

DD_LOG_LEVEL
Sets logging level for the Datadog Serverless Compatibility Layer. Defaults to info.

Values: trace, debug, info, warn, error, critical, off