- 필수 기능
- 시작하기
- Glossary
- 표준 속성
- Guides
- Agent
- 통합
- 개방형텔레메트리
- 개발자
- Administrator's Guide
- API
- Datadog Mobile App
- CoScreen
- Cloudcraft
- 앱 내
- 서비스 관리
- 인프라스트럭처
- 애플리케이션 성능
- APM
- Continuous Profiler
- 스팬 시각화
- 데이터 스트림 모니터링
- 데이터 작업 모니터링
- 디지털 경험
- 소프트웨어 제공
- 보안
- AI Observability
- 로그 관리
- 관리
",t};e.buildCustomizationMenuUi=t;function n(e){let t='
",t}function s(e){let n=e.filter.currentValue||e.filter.defaultValue,t='${e.filter.label}
`,e.filter.options.forEach(s=>{let o=s.id===n;t+=``}),t+="${e.filter.label}
`,t+=`To try the preview of App and API Protection Service Extensions for GCP, use the following setup instructions.
You can enable App and API Protection with GCP Service Extensions within GCP Cloud Load Balancing. The Datadog App and API Protection Service Extensions integration provides threat detection and blocking capabilities directly in your GCP environment.
The Datadog Agent is installed and configured for your application’s operating system or container, cloud, or virtual environment.
Remote Configuration is configured to enable blocking attackers through the Datadog UI.
In your GCP project, you have either the project owner
or editor
role, or the relevant Compute Engine IAM roles: compute.instanceAdmin.v1
(to create instances) and compute.networkAdmin
(to set up load balancing).
A GCP project with a Cloud Load Balancer is configured for your services. The Cloud Load Balancer must be one of the Application Load Balancers that supports Traffic Callouts.
Compute Engine API and Network Services API are enabled:
gcloud services enable compute.googleapis.com networkservices.googleapis.com
To set up the App and API Protection Service Extension in GCP, use the Google Cloud Console with VM Compute Engine or Terraform scripts, and complete the following steps.
Note: Google Cloud provides guides for creating a callout backend service and configuring a Service Extension as a traffic extension. The following steps use the same general setup but include custom configurations specific to Datadog’s App and API Protection integration.
Create a VM Compute Engine instance using the Datadog App and API Protection Service Extensions Callout container image.
See Configuration for available environment variables when setting up your VM instance.
Add the VM to an unmanaged instance group.
Specify http:80
and grpc:443
(or your configured values) for the port mappings of the instance group.
Create a backend service with the following settings:
HTTP2
grpc
80
(or your configured value)Add the instance group with the service extension VM as a backend to this backend service.
Configure the Traffic Service Extension callout:
Traffic extensions
as the type.Create an Extension Chain
true
in the Match condition.Callouts
.Request Headers
and Response Headers
. These are required. Do not select the bodies events. These are supported out-of-the-box by configuring the Service Extension callout with the body processing size limit.fail_open
to still allow the traffic to pass through if the service extension fails or times out.fail_open
setting. When enabled, request or response processing continues without error even if the extension fails, ensuring your application remains available.Note: When body processing is enabled, the service extension decides based on its configuration whether to receive the request body, the response body, or both, along with the headers which are always included. This decision is made separately for requests and responses. Receiving body content can increase processing time, especially for large payloads. If you enable body processing, make sure to adjust your timeout settings to allow for the additional processing time required for body inspection and transfer.
이 구성을 완료하면 라이브러리가 애플리케이션에서 보안 데이터를 수집해 에이전트로 전송하고, 이 데이터는 다시 Datadog로 전송됩니다. 그러면 기본 감지 규칙에 기반해 공격자 기술과 잠재 구성 오류가 플래그되며, 이를 기반으로 문제 해결 단계를 진행할 수 있습니다.
애플리케이션 보안 관리에서 감지 활동을 잘 하고 있는지 확인하려면 알려진 공격 패턴을 애플리케이션으로 보내세요. 예를 들어 다음 curl 스크립트가 포함된 파일을 실행해 보안 스캐너 감지됨 규칙을 트리거할 수 있습니다.
for ((i=1;i<=250;i++));
do
# Target existing service’s routes
curl https://your-application-url/existing-route -A dd-test-scanner-log;
# Target non existing service’s routes
curl https://your-application-url/non-existing-route -A dd-test-scanner-log;
done
참고: dd-test-scanner-log
값은 최신 릴리스에서 지원됩니다.
애플리케이션을 활성화하고 실행한 몇 분 후 Application Signals Explorer에서 위협 정보가 표시되고 Vulnerability Explorer에 취약 정보가 표시됩니다.
You can use Terraform to automate the deployment of the App and API Protection GCP Service Extension. This simplifies the process of setting up the service extension to work with your existing load balancer.
The Terraform deployment will create the following components:
The App and API Protection Service Extension deployment requires several components that work together. We’ll create a Terraform module that encapsulates all these components, making the deployment process repeatable and easier to maintain.
Create a new directory and the necessary Terraform files:
mkdir gcp-aap-service-extension && cd gcp-aap-service-extension
touch main.tf variables.tf
Add the following code to your main.tf
file. This file defines all the infrastructure components needed for the App and API Protection Service Extension, including network rules, VM instances, and load balancer configuration:
# main.tf
#----------------------------------------------------------
# Network Configuration
#----------------------------------------------------------
# Firewall rule to allow the Service Extension to communicate with the Datadog Agent
resource "google_compute_firewall" "aap_se_firewall" {
name = "${var.project_prefix}-dd-agent-firewall"
network = "default"
allow {
protocol = "tcp"
ports = ["8126"]
}
source_tags = ["http-server"]
target_tags = ["datadog-agent"]
}
#----------------------------------------------------------
# Datadog Agent Configuration
#----------------------------------------------------------
# Datadog Agent container configuration
module "gce-container-datadog-agent" {
source = "terraform-google-modules/container-vm/google"
container = {
image = "public.ecr.aws/datadog/agent:latest"
env = [
{
name = "DD_API_KEY",
value = var.datadog_agent_api_key,
},
{
name = "DD_ENV",
value = "dev",
},
]
}
}
# Datadog Agent VM instance that collects traces from the Service Extension
resource "google_compute_instance" "datadog_agent" {
name = "${var.project_prefix}-datadog-agent"
machine_type = "e2-medium"
zone = var.zone
boot_disk {
auto_delete = true
initialize_params {
image = module.gce-container-datadog-agent.source_image
}
}
network_interface {
network = "default"
subnetwork = var.application_vpc_subnetwork
}
metadata = {
gce-container-declaration = module.gce-container-datadog-agent.metadata_value
google-logging-enabled = "true"
}
lifecycle {
create_before_destroy = true
}
tags = ["datadog-agent"]
}
#----------------------------------------------------------
# Service Extension Callout Container Configuration
#----------------------------------------------------------
# Datadog App and API Protection GCP Service Extension container configuration
module "gce-container-aap-service-extension" {
source = "terraform-google-modules/container-vm/google"
container = {
image = "ghcr.io/datadog/dd-trace-go/service-extensions-callout:v2.2.2" # Replace with the latest version
env = [
{
name = "DD_AGENT_HOST",
value = google_compute_instance.datadog_agent.network_interface.0.network_ip,
},
# Enable the body processing by uncommenting the following lines. Set accordingly the body processing size limit.
# {
# name = "DD_APPSEC_BODY_PARSING_SIZE_LIMIT",
# value = "10000000" # Body processing size limit in bytes. (10MB)
# }
]
}
}
# Service Extension VM instance (callout instance)
resource "google_compute_instance" "default" {
name = "${var.project_prefix}-instance"
machine_type = "e2-medium"
zone = var.zone
boot_disk {
auto_delete = true
initialize_params {
image = module.gce-container-aap-service-extension.source_image
}
}
network_interface {
network = var.application_vpc_network
subnetwork = var.application_vpc_subnetwork
}
metadata = {
gce-container-declaration = module.gce-container-aap-service-extension.metadata_value
google-logging-enabled = "true"
}
lifecycle {
create_before_destroy = true
}
# http-server: Allow access on the http server for health checks
# https-server: Allow access on the 443 port for the AAP Service Extension
tags = ["http-server", "https-server", "lb-health-check"]
}
#----------------------------------------------------------
# Load Balancer Integration
#----------------------------------------------------------
# Unmanaged Instance Group including the App and API Protection Service Extension instance
resource "google_compute_instance_group" "aap_se_instance_group" {
name = "${var.project_prefix}-instance-group"
description = "Unmanaged instance group for the App and API Protection Service Extension"
zone = var.zone
named_port {
name = "http"
port = 80
}
named_port {
name = "grpc"
port = "443"
}
instances = [
google_compute_instance.default.self_link
]
}
# Health Check for the Backend Service
resource "google_compute_health_check" "aap_se_health_check" {
name = "${var.project_prefix}-health-check"
check_interval_sec = 5
timeout_sec = 5
healthy_threshold = 2
unhealthy_threshold = 2
http_health_check {
port = 80
request_path = "/"
}
}
# Backend Service that points to the Service Extension instance group
resource "google_compute_backend_service" "se_backend_service" {
name = "${var.project_prefix}-backend-service"
port_name = "grpc"
protocol = "HTTP2"
timeout_sec = 10
health_checks = [google_compute_health_check.aap_se_health_check.self_link]
load_balancing_scheme = "EXTERNAL_MANAGED"
backend {
group = google_compute_instance_group.aap_se_instance_group.self_link
}
}
#----------------------------------------------------------
# GCP Service Extension
#----------------------------------------------------------
# GCP Service Extension configuration for traffic interception
resource "google_network_services_lb_traffic_extension" "default" {
name = "${var.project_prefix}-service-extension"
description = "Datadog App and API Protection Service Extension"
location = "global"
load_balancing_scheme = "EXTERNAL_MANAGED"
forwarding_rules = [var.load_balancer_forwarding_rule]
extension_chains {
name = "${var.project_prefix}-service-extension-chain"
match_condition {
cel_expression = "true" # Match all traffic
}
extensions {
name = "${var.project_prefix}-service-extension-chain-ext"
service = google_compute_backend_service.se_backend_service.self_link
# Required: Please set your application hostname.
authority = "datadoghq.com"
# By default, if the service extension fails or times out, the proxy will return a 500 error.
# To prevent this, enable the fail_open setting.
# When enabled, the request processing is stopped when an error occurs but the request is not dropped, ensuring the availability of the application.
fail_open = true
# Mandatory, do not touch: Only set the Request and Response Headers events.
# If bodies events are selected, the service extension will transfer and analyze the bodies for every request without applying relevant selection rules.
# Please use the DD_APPSEC_BODY_PARSING_SIZE_LIMIT environment variable on the callout container to enable body processing.
supported_events = ["REQUEST_HEADERS", "RESPONSE_HEADERS"]
# Adjust your timeout settings depending of your processing needs (e.g. with body processing)
# Note: This is the same option as the "message_timeout" for an Envoy ext_proc configuration.
timeout = "0.5s"
}
}
}
Add the following content to the variables.tf
file. This file defines all the required input variables for your Terraform configuration:
# variables.tf
variable "region" {
description = "The GCP region where resources will be created (e.g., us-central1)"
type = string
validation {
condition = length(var.region) > 0
error_message = "Region cannot be empty."
}
}
variable "zone" {
description = "The GCP zone where zonal resources will be created (e.g., us-central1-a)"
type = string
validation {
condition = length(var.zone) > 0
error_message = "Zone cannot be empty."
}
}
# Project configuration
variable "project_prefix" {
description = "Prefix for the project. All resource names will be prefixed with this value"
type = string
validation {
condition = length(var.project_prefix) > 0
error_message = "Project prefix cannot be empty."
}
}
# Network configuration
variable "application_vpc_network" {
description = "Name of the VPC network for the application"
type = string
validation {
condition = length(var.application_vpc_network) > 0
error_message = "VPC network name cannot be empty."
}
}
variable "application_vpc_subnetwork" {
description = "Name of the VPC subnetwork for the application"
type = string
validation {
condition = length(var.application_vpc_subnetwork) > 0
error_message = "VPC subnetwork name cannot be empty."
}
}
# Authentication and API keys
variable "datadog_agent_api_key" {
description = "Datadog API key"
type = string
sensitive = true
validation {
condition = length(var.datadog_agent_api_key) > 0
error_message = "Datadog API key cannot be empty."
}
}
# Load balancer configuration
variable "load_balancer_forwarding_rule" {
description = "Self link to the forwarding rule for the load balancer"
}
Include the module in your main Terraform project. This example shows how to reference the module you created above:
# main.tf
module "service_extension" {
source = "./gcp-aap-service-extension"
zone = "us-central1-a"
region = "us-central1"
project_prefix = "datadog-aap"
application_vpc_subnetwork = "your-subnet-name"
datadog_agent_api_key = "your-datadog-api-key"
load_balancer_forwarding_rule = "projects/your-project/regions/us-central1/forwardingRules/your-lb-rule" # or with a self link on your resource
}
Deploy the infrastructure by running these commands in the directory where your Terraform files are located:
terraform init
terraform plan
terraform apply
The service extension automatically inspects all traffic passing through your load balancer for security threats.
이 구성을 완료하면 라이브러리가 애플리케이션에서 보안 데이터를 수집해 에이전트로 전송하고, 이 데이터는 다시 Datadog로 전송됩니다. 그러면 기본 감지 규칙에 기반해 공격자 기술과 잠재 구성 오류가 플래그되며, 이를 기반으로 문제 해결 단계를 진행할 수 있습니다.
애플리케이션 보안 관리에서 감지 활동을 잘 하고 있는지 확인하려면 알려진 공격 패턴을 애플리케이션으로 보내세요. 예를 들어 다음 curl 스크립트가 포함된 파일을 실행해 보안 스캐너 감지됨 규칙을 트리거할 수 있습니다.
for ((i=1;i<=250;i++));
do
# Target existing service’s routes
curl https://your-application-url/existing-route -A dd-test-scanner-log;
# Target non existing service’s routes
curl https://your-application-url/non-existing-route -A dd-test-scanner-log;
done
참고: dd-test-scanner-log
값은 최신 릴리스에서 지원됩니다.
애플리케이션을 활성화하고 실행한 몇 분 후 Application Signals Explorer에서 위협 정보가 표시되고 Vulnerability Explorer에 취약 정보가 표시됩니다.
The Datadog App and API Protection Service Extension Docker image supports the following configuration settings:
Environment variable | Default value | Description |
---|---|---|
DD_SERVICE_EXTENSION_HOST | 0.0.0.0 | gRPC server listening address. |
DD_SERVICE_EXTENSION_PORT | 443 | gRPC server port. |
DD_SERVICE_EXTENSION_HEALTHCHECK_PORT | 80 | HTTP server port for health checks. |
DD_APPSEC_BODY_PARSING_SIZE_LIMIT | 0 | Maximum size of the bodies to be processed in bytes. If set to 0 , the bodies are not processed. (Recommended value: 10000000 (10MB)) |
DD_SERVICE | serviceextensions | Service name shown in the Datadog UI. |
Configure the container to send traces to your Datadog Agent using the following environment variables:
Environment variable | Default value | Description |
---|---|---|
DD_AGENT_HOST | localhost | Hostname or IP of your Datadog Agent. |
DD_TRACE_AGENT_PORT | 8126 | Port of the Datadog Agent for trace collection. |
The App and API Protection GCP Service Extensions integration is built on top of the Datadog Go Tracer and inherits all of its environment variables. See Configuring the Go Tracing Library and App and API Protection Library Configuration.
v2.2.2
). In some cases, early release versions might be published between official tracer releases, and these images are tagged with a suffix such as -docker.1
.The GCP Service Extensions integration has the following limitations:
v2.2.2
or later.For additional details on the GCP Service Extensions integration compatibilities, refer to the GCP Service Extensions integration compatibility page.