- 필수 기능
- 시작하기
- Glossary
- 표준 속성
- Guides
- Agent
- 통합
- 개방형텔레메트리
- 개발자
- Administrator's Guide
- API
- Datadog Mobile App
- CoScreen
- Cloudcraft
- 앱 내
- 서비스 관리
- 인프라스트럭처
- 애플리케이션 성능
- APM
- Continuous Profiler
- 스팬 시각화
- 데이터 스트림 모니터링
- 데이터 작업 모니터링
- 디지털 경험
- 소프트웨어 제공
- 보안
- AI Observability
- 로그 관리
- 관리
Supported OS
Use the Anthropic integration to monitor, troubleshoot, and evaluate your LLM-powered applications, such as chatbots or data extraction tools, using Anthropic’s models.
If you are building LLM applications, use LLM Observability to investigate the root cause of issues, monitor operational performance, and evaluate the quality, privacy, and safety of your LLM applications.
See the LLM Observability tracing view video for an example of how you can investigate a trace.
You can enable LLM Observability in different environments. Follow the appropriate setup based on your scenario:
ddtrace
package: pip install ddtrace
DD_SITE=<YOUR_DATADOG_SITE> DD_API_KEY=<YOUR_API_KEY> DD_LLMOBS_ENABLED=1 DD_LLMOBS_AGENTLESS_ENABLED=1 DD_LLMOBS_ML_APP=<YOUR_ML_APP_NAME> ddtrace-run python <YOUR_APP>.py
docker run -d \
--cgroupns host \
--pid host \
-v /var/run/docker.sock:/var/run/docker.sock:ro \
-v /proc/:/host/proc/:ro \
-v /sys/fs/cgroup/:/host/sys/fs/cgroup:ro \
-e DD_API_KEY=<DATADOG_API_KEY> \
-p 127.0.0.1:8126:8126/tcp \
-p 127.0.0.1:8125:8125/udp \
-e DD_DOGSTATSD_NON_LOCAL_TRAFFIC=true \
-e DD_APM_ENABLED=true \
gcr.io/datadoghq/agent:latest
ddtrace
package: pip install ddtrace
ddtrace-run
command: DD_SITE=<YOUR_DATADOG_SITE> DD_API_KEY=<YOUR_API_KEY> DD_LLMOBS_ENABLED=1 DD_LLMOBS_ML_APP=<YOUR_ML_APP_NAME> ddtrace-run python <your_app>.py
Note: If the Agent is running on a custom host or port, set DD_AGENT_HOST
and DD_TRACE_AGENT_PORT
accordingly.
DD_SITE=<YOUR_DATADOG_SITE> DD_API_KEY=<YOUR_API_KEY> DD_LLMOBS_ENABLED=1 DD_LLMOBS_ML_APP=<YOUR_ML_APP_NAME>
Note: In serverless environments, Datadog automatically flushes spans at the end of the Lambda function.
The Anthropic integration allows for automatic tracing of chat message calls made by the Anthropic Python SDK, capturing latency, errors, input/output messages, and token usage during Anthropic operations.
The following methods are traced for both synchronous and asynchronous Anthropic operations:
Anthropic().messages.create()
, AsyncAnthropic().messages.create()
Anthropic().messages.stream()
, AsyncAnthropic().messages.stream()
No additional setup is required for these methods.
Validate that LLM Observability is properly capturing spans by checking your application logs for successful span creation. You can also run the following command to check the status of the dd-trace
integration:
ddtrace-run --info
Look for the following message to confirm the setup:
Agent error: None
If you encounter issues during setup, enable debug logging by passing the --debug
flag:
ddtrace-run --debug
This displays any errors related to data transmission or instrumentation, including issues with Anthropic traces.
The Anthropic integration does not include any custom metrics.
The Anthropic integration does not include any service checks.
The Anthropic integration does not include any events.
Need help? Contact Datadog support.