このページは日本語には対応しておりません。随時翻訳に取り組んでいます。
翻訳に関してご質問やご意見ございましたら、お気軽にご連絡ください

This processor parses logs using the grok parsing rules that are available for a set of sources. The rules are automatically applied to logs based on the log source. Therefore, logs must have a source field with the source name. If this field is not added when the log is sent to the Observability Pipelines Worker, you can use the Add field processor to add it.

If the source field of a log matches one of the grok parsing rule sets, the log’s message field is checked against those rules. If a rule matches, the resulting parsed data is added in the message field as a JSON object, overwriting the original message.

If there isn’t a source field on the log, or no rule matches the log message, then no changes are made to the log and it is sent to the next step in the pipeline.

To set up the grok parser, define a filter query. Only logs that match the specified filter query are processed. All logs, regardless of whether they match the filter query, are sent to the next step in the pipeline.

To test log samples for out-of-the-box rules:

  1. Click the Preview Library Rules button.
  2. Search or select a source in the dropdown menu.
  3. Enter a log sample to test the parsing rules for that source.

To add a custom parsing rule:

  1. Click Add Custom Rule.
  2. If you want to clone a library rule, select Clone library rule and then the library source from the dropdown menu.
  3. If you want to create a custom rule, select Custom and then enter the source. The parsing rules are applied to logs with that source.
  4. Enter log samples to test the parsing rules.
  5. Enter the rules for parsing the logs. See Parsing for more information on writing parsing rules.
    Note: The url, useragent, and csv filters are not available.
  6. Click Advanced Settings if you want to add helper rules. See Using helper rules to factorize multiple parsing rules for more information.
  7. Click Add Rule.

Filter query syntax

Each processor has a corresponding filter query in their fields. Processors only process logs that match their filter query. And for all processors except the filter processor, logs that do not match the query are sent to the next step of the pipeline. For the filter processor, logs that do not match the query are dropped.

For any attribute, tag, or key:value pair that is not a reserved attribute, your query must start with @. Conversely, to filter reserved attributes, you do not need to append @ in front of your filter query.

For example, to filter out and drop status:info logs, your filter can be set as NOT (status:info). To filter out and drop system-status:info, your filter must be set as NOT (@system-status:info).

Filter query examples:

  • NOT (status:debug): This filters for only logs that do not have the status DEBUG.
  • status:ok service:flask-web-app: This filters for all logs with the status OK from your flask-web-app service.
    • This query can also be written as: status:ok AND service:flask-web-app.
  • host:COMP-A9JNGYK OR host:COMP-J58KAS: This filter query only matches logs from the labeled hosts.
  • @user.status:inactive: This filters for logs with the status inactive nested under the user attribute.

Learn more about writing filter queries in Datadog’s Log Search Syntax.