Este producto no es compatible con el sitio Datadog seleccionado. ().
Esta página aún no está disponible en español. Estamos trabajando en su traducción. Si tienes alguna pregunta o comentario sobre nuestro actual proyecto de traducción, no dudes en ponerte en contacto con nosotros.
In Go, it is strongly discouraged to use the crypto/rc4 package for cryptographic operations involving the RC4 (Rivest Cipher 4) algorithm. Avoid the crypto/rc4 package for the following reasons:
Weak Security: The RC4 algorithm is considered weak and insecure for modern cryptographic applications. It is susceptible to significant vulnerabilities, making it unsuitable for ensuring data confidentiality. Several attacks, such as the Fluhrer-Mantin-Shamir attack and biases in the keystream, have been discovered over the years. Due to these vulnerabilities, the RC4 algorithm is no longer considered secure.
Cryptographic Strength: RC4 has a small key size of up to 256 bits (variable length), which is relatively short compared to modern symmetric encryption algorithms like AES (Advanced Encryption Standard). A shorter key size reduces the complexity of brute-force attacks and increases the likelihood of successful attacks on the encryption.
Lack of Compatibility: The crypto/rc4 package in Go does not provide compatibility with more advanced modes of operation or options for authenticated encryption. Modern cryptographic systems often require these features to ensure data integrity and protect against known vulnerabilities.
Recommended Alternatives
Instead of using RC4, it is recommended to use stronger and more secure algorithms like AES (Advanced Encryption Standard). The Go standard library offers the crypto/aes package to implement AES encryption, which provides significant security improvements and better support for advanced cryptographic features. |
To ensure secure and reliable cryptographic operations, it is essential to avoid using the crypto/rc4 package and opt for stronger algorithms like AES. AES provides enhanced security, compatibility with modern cryptographic practices, and support for larger key sizes. By adopting modern and secure algorithms, you can protect data confidentiality effectively.
Always stay updated with the latest best practices and security recommendations to ensure the integrity and security of your cryptographic operations. Choosing strong encryption algorithms is crucial for safeguarding sensitive data in your Go applications.
packagemainimport("crypto/aes")funcmain(){// Safe: using AES instead of RC4key:=[]byte("mySampleKey12345")_,err:=aes.NewCipher(key)iferr!=nil{panic(err)}}
Integraciones sin problemas. Prueba Datadog Code Security
Datadog Code Security
Prueba esta regla y analiza tu código con Datadog Code Security
Cómo usar esta regla
1
2
rulesets:- go-security # Rules to enforce Go security.
Crea un static-analysis.datadog.yml con el contenido anterior en la raíz de tu repositorio
Utiliza nuestros complementos del IDE gratuitos o añade análisis de Code Security a tus pipelines de CI.