BigQuery Model

This table represents the BigQuery Model resource from Google Cloud Platform.

gcp.bigquery_model

Fields

TitleIDTypeData TypeDescription
_keycorestring
ancestorscorearray<string>
best_trial_idcoreint64The best trial_id across all training runs.
creation_timecoreint64Output only. The time when this model was created, in millisecs since the epoch.
datadog_display_namecorestring
default_trial_idcoreint64Output only. The default trial_id to use in TVFs when the trial_id is not passed in. For single-objective [hyperparameter tuning](/bigquery-ml/docs/reference/standard-sql/bigqueryml-syntax-hp-tuning-overview) models, this is the best trial ID. For multi-objective [hyperparameter tuning](/bigquery-ml/docs/reference/standard-sql/bigqueryml-syntax-hp-tuning-overview) models, this is the smallest trial ID among all Pareto optimal trials.
descriptioncorestringOptional. A user-friendly description of this model.
encryption_configurationcorejsonCustom encryption configuration (e.g., Cloud KMS keys). This shows the encryption configuration of the model data while stored in BigQuery storage. This field can be used with PatchModel to update encryption key for an already encrypted model.
etagcorestringOutput only. A hash of this resource.
expiration_timecoreint64Optional. The time when this model expires, in milliseconds since the epoch. If not present, the model will persist indefinitely. Expired models will be deleted and their storage reclaimed. The defaultTableExpirationMs property of the encapsulating dataset can be used to set a default expirationTime on newly created models.
feature_columnscorejsonOutput only. Input feature columns that were used to train this model.
friendly_namecorestringOptional. A descriptive name for this model.
hparam_search_spacescorejsonOutput only. All hyperparameter search spaces in this model.
hparam_trialscorejsonOutput only. Trials of a [hyperparameter tuning](/bigquery-ml/docs/reference/standard-sql/bigqueryml-syntax-hp-tuning-overview) model sorted by trial_id.
label_columnscorejsonOutput only. Label columns that were used to train this model. The output of the model will have a "predicted_" prefix to these columns.
labelscorearray<string>
last_modified_timecoreint64Output only. The time when this model was last modified, in millisecs since the epoch.
locationcorestringOutput only. The geographic location where the model resides. This value is inherited from the dataset.
model_referencecorejsonRequired. Unique identifier for this model.
model_typecorestringOutput only. Type of the model resource. Possible values: ['MODEL_TYPE_UNSPECIFIED', 'LINEAR_REGRESSION', 'LOGISTIC_REGRESSION', 'KMEANS', 'MATRIX_FACTORIZATION', 'DNN_CLASSIFIER', 'TENSORFLOW', 'DNN_REGRESSOR', 'XGBOOST', 'BOOSTED_TREE_REGRESSOR', 'BOOSTED_TREE_CLASSIFIER', 'ARIMA', 'AUTOML_REGRESSOR', 'AUTOML_CLASSIFIER', 'PCA', 'DNN_LINEAR_COMBINED_CLASSIFIER', 'DNN_LINEAR_COMBINED_REGRESSOR', 'AUTOENCODER', 'ARIMA_PLUS', 'ARIMA_PLUS_XREG', 'RANDOM_FOREST_REGRESSOR', 'RANDOM_FOREST_CLASSIFIER', 'TENSORFLOW_LITE', 'ONNX']. Values descriptions: ['', 'Linear regression model.', 'Logistic regression based classification model.', 'K-means clustering model.', 'Matrix factorization model.', 'DNN classifier model.', 'An imported TensorFlow model.', 'DNN regressor model.', 'An imported XGBoost model.', 'Boosted tree regressor model.', 'Boosted tree classifier model.', 'ARIMA model.', 'AutoML Tables regression model.', 'AutoML Tables classification model.', 'Prinpical Component Analysis model.', 'Wide-and-deep classifier model.', 'Wide-and-deep regressor model.', 'Autoencoder model.', 'New name for the ARIMA model.', 'ARIMA with external regressors.', 'Random forest regressor model.', 'Random forest classifier model.', 'An imported TensorFlow Lite model.', 'An imported ONNX model.']
optimal_trial_idscorearray<int64>Output only. For single-objective [hyperparameter tuning](/bigquery-ml/docs/reference/standard-sql/bigqueryml-syntax-hp-tuning-overview) models, it only contains the best trial. For multi-objective [hyperparameter tuning](/bigquery-ml/docs/reference/standard-sql/bigqueryml-syntax-hp-tuning-overview) models, it contains all Pareto optimal trials sorted by trial_id.
organization_idcorestring
parentcorestring
project_idcorestring
project_numbercorestring
remote_model_infocorejsonOutput only. Remote model info
resource_namecorestring
tagscorehstore
training_runscorejsonInformation for all training runs in increasing order of start_time.